984 resultados para Toadfish venom
Resumo:
Antiophidic activity from decoct of Jatropha gossypiifolia L. leaves against Bothrops jararaca venom. Snakebites are a serious worldwide public health problem. In Latin America, about 90 % of accidents are attributed to snakes from Bothrops genus. Currently, the main available treatment is the antivenom serum therapy, which has some disadvantages such as inability to neutralize local effects, risk of immunological reactions, high cost and difficult access in some regions. In this context, the search for alternative therapies to treat snakebites is relevant. Jatropha gossypiifolia L., a medicinal plant popularly known in Brazil as “pinhão-roxo”, is very used in folk medicine as antiophidic. So, the aim of this study is to evaluate the antiophidic properties of this species against enzymatic and biological activities from Bothrops jararaca snake venom. The aqueous leaf extract of J. gossypiifolia was prepared by decoction. The inhibition studies were performed in vitro, by pre-incubation of a fixed amount of venom with different amounts of extract from J. gossypiifolia for 60 min at 37 °C, and in vivo, through oral or intraperitoneal treatment of animals, in different doses, 60 min before venom injection. The proteolytic activity upon azocasein was efficiently inhibited, indicating inhibitory action upon metalloproteinases (SVMPs) and/or serine proteases (SVSPs). The extract inhibited the fibrinogenolytic activity, which was also confirmed by zymography, where it was possible to observe that the extract preferentially inhibits fibrinogenolytic enzymes of 26 and 28 kDa. The coagulant activity upon fibrinogen and plasma were significantly inhibited, suggesting an inhibitory action upon thrombin-like enzymes (SVTLEs), as well as upon clotting factor activators toxins. The extract prolonged the activated partial thromboplastin time (aPTT), suggesting an inhibitory action toward not only to SVTLEs, but also against endogenous thrombin. The defibrinogenating activity in vivo was efficiently inhibited by the extract on oral route, confirming the previous results. The local hemorrhagic activity was also significantly inhibited by oral route, indicating an inhibitory action upon SVMPs. The phospholipase activity in vitro was not inhibited. Nevertheless, the edematogenic and myotoxic activities were efficiently inhibited, by oral and intraperitoneal route, which may indicate an inhibitory effect of the extract upon Lys49 phospholipase (PLA2) and/ or SVMPs, or also an anti-inflammatory action against endogenous chemical mediators. Regarding the possible action mechanism, was observed that the extract did not presented proteolytic activity, however, presented protein precipitating action. In addition, the extract showed significant antioxidant activity in different models, which could justify, at least partially, the antiophidic activity presented. The metal chelating action presented by extract could be correlated with SVMPs inhibition, once these enzymes are metal-dependent. The phytochemical analysis revealed the presence of sugars, alkaloids, flavonoids, tannins, terpenes and/or steroids and proteins, from which the flavonoids could be pointed as major compounds, based on chromatographic profile obtained by thin layer chromatography (TLC). In conclusion, the results demonstrate that the J. gossypiifolia leaves decoct present potential antiophidic activity, including action upon snakebite local effects, suggesting that this species may be used as a new source of bioactive molecules against bothropic venom.
Resumo:
In Brazil, there is a high incidence of venomous animals. Among them, scorpions are highlighted by their medical importance, and for being their venom a source of several molecules with biological and pharmacological activity not yet fully understood, including several bioactive peptides. Antimicrobial peptides (AMPs) are components of the immune system in prokaryotes and eukaryotes, used in the first line of defense against microorganisms. In the present study, we characterized the first PAM previously identified through transcriptome of the venom gland of the scorpion Tityus stigmurus, named Stigmurin. The characteristics of Stigmurin were investigated by computational modeling and construction of dendrogram. In vitro tests investigated the antibacterial, antifungal, haemolytic and cytotoxic effects of crude venom and Stigmurin. In addition, the structural characteristics of Stigmurin were investigated by circular dochroism in water, 2, 2 , 2- trifluoethanol (TFE) and sodium dodecyl sulfate (SDS) and the models were refined by molecular dynamics simulations. The results showed that the selected sequence encodes a mature protein of 17 amino acid residues and the dendrogram reveals a case of convergent evolution. The crude venom showed no antimicrobial activity, however, Stigmurin exhibited a broad spectrum of antibacterial activity, with minimal inhibitory concentrations (MIC) ranging from 31.25 and 250 µg/mL for different strains, while the hemolytic activity at these concentrations was low. In cytotoxicity studies, the crude venom was unable to reduce cell viability in VERO E6 cells; in contrast, its activity in SiHa cells was significantly higher, corresponding to IC50 of 3.6 µg/mL. For Stigmurin the concentration sable to decrease cell viability of Vero E6 and SiHa cells in 50% were 275.67 µg/mL and 212.54 µg/mL, respectively. The dichroism spectra revealed the conformational flexibility, with predominating extended and β–sheet structures, as well as a remark able renaturation ability. The results suggest that Stigmurin could be considered as a potential antiinfective drug
Resumo:
Envenomation caused by venomous animals, mainly scorpions and snakes, are a serious matter of public health. Tityus serrulatus is considered the most venomous scorpion in South America because of the high level of toxicity of its venom. It is responsible for causing serious accidents, mainly with kids. The species Bothrops jararaca is a serpent that has in its venom a complex mixture of enzyme, peptides and other molecules. The toxins of the venom of B. jararaca induce local and systemic inflammatory responses. The treatment chosen to serious cases of envenomation is the intravenous administration of the specific antivenom. However, the treatment is not always accessible to those residents in rural areas, so that they use medicinal plant extracts as the treatment. In this context, aqueous extracts, fractions and isolated compounds of Aspidosperma pyrifolium (pereiro) and Ipomoea asarifolia (salsa, salsa-brava), used in popular medicine, were studied in this research to evaluate the anti-inflammatory activity in the peritonitis models induced by carrageenan and peritonitis induced by the venom of the T. serrulatus (VTs), and in the local oedema model and inflammatory infiltrate induced by the venom of the B. jararaca, administrated intravenously. The results of the assays of cytotoxicity, using the MTT, showed that the aqueous extracts from the plant species presented low toxicity to the cells that came from the fibroblast of the mouse embryo (3T3).The chemical analysis of the extracts by High Performance Liquid Chromatography revealed the presence of the rutin flavonoid, in A. pyrifoliu, and rutin, clorogenic acid and caffeic acid, in I. asarifolia. Concerning the pharmacological evaluation, the results showed that the pre-treatment using aqueous extracts and fractions reduced the total leukocyte migration to the abdominal cavity in the peritonitis model caused by the carrageenan and in the peritonitis model induced by the T. serulatus venom. Yet, these groups presented anti-oedematous activity, in the local oedema model caused by the venom of the B. jararaca, and reduced the inflammatory infiltrate to the muscle. The serum (anti-arachnid and anti-bothropic) specific to each venom acted inhibiting the inflammatory action of the venoms and were used as control. The compounds identified in the extracts were also tested and, similar to the plant extracts, showed meaningful anti-inflammatory effects, in the tested doses. Thus, these results are indicating the potential anti-inflammatory activity of the plants studied. This is the first research that evaluated the possible biological effects of the A. pyrifolium and I. asarifolia, showing the biological potential that these species have.
Resumo:
Accidents caused by venomous animals represents a significant and serious public health problem in certain regions of Brazil, as well as in other parts of the world by the frequency with which they occur and the mortality they cause. The use of plant extracts as an antidote for poisoning cases is an ancient practice used in many communities that have no access to antivenom. Medicinal plants represent an important source of obtaining bioactive compounds able to assist directly in the treatment of poisoning or indirectly supplementing serum therapy currently used. The aim of this study was to evaluate the effect of extracts, fractions and isolated compounds from M. tenuiflora and H. speciosa in the inflammatory process induced by carrageenan and the venom of B. jararaca and T. serrulatus. The results showed that both M. tenuiflora and H. speciosa were capable of inhibiting cell migration and cytokines levels in peritonitis induced by carrageenin and venom of T. serrulatus. In poisoning by B. jararaca model, mice treated with the plants in studies decreased the leukocyte influx into the peritoneal cavity. Finally the M. tenuiflora and H. speciosa had antiphlogistic activity, reducing edema formation and exerted inhibitory action of leukocyte migration in local inflammation induced by the venom of B. jararaca. Through of Thin Layer Chromatography (TLC) analysis was possible identified the presence of flavonoids ,saponins and/or terpenes in aqueous extract of M. tenuiflora. By High Performance Liquid Chromatography analysis, it was possible to identify the presence of rutin and chlorogenic acid in aqueous extract of H. speciosa. We conclude that the administration of extracts, fractions and isolated compounds of H. speciosa and M. tenuiflora resulted in inhibition of the inflammatory process in different experimental models. This study demonstrates for the first time the effect of M. tenuiflora and H. speciosa in inhibition of the inflammation caused by B. jararaca and T. serrulatus venom.
Resumo:
Reported accidents involving the poisoning scorpions are still frequent in Brazil, mainly caused by Tityus serrulatus, known as yellow scorpion. Although antivenom sera are produced routinely by various government laboratories, the effectiveness of its use depends on how quickly treatment is initiated and efficiency in the production of antibodies by the immunized animals. In this study, the development of cationic polymeric nanoparticles of poly(lactic acid) aimed to create a modified delivery system for peptides and proteins of T. serrulatus venom, able to enhance the production of serum antibodies against the scorpion toxins. The cationic nanoparticles were obtained by a low energy nanoprecipitation, after study of the parameters’ variations effects over the physicochemical properties of the particles. The surface functionalization of the nanoparticles with the hyperbranched polyethyleneimine was proved by zeta potential analysis and enabled the adsorption by electrostatic interaction of different types of proteins. The protein loading efficiency of 40-80 % to bovine serum albumin (BSA) and 100 % to scorpion venom peptides evaluated by spectrophotometry and polyacrylamide gel electrophoresis confirmed the success of the selected parameters established for obtainment of nanoparticles, produced with size between 100 to 250 nm. The atomic force microscopy analysis and in vitro release showed that the spherical nanoparticles provided a sustained release profile of proteins by diffusion mechanism, demonstrating the potential for application of the nanoparticles in vivo.
Resumo:
Reported accidents involving the poisoning scorpions are still frequent in Brazil, mainly caused by Tityus serrulatus, known as yellow scorpion. Although antivenom sera are produced routinely by various government laboratories, the effectiveness of its use depends on how quickly treatment is initiated and efficiency in the production of antibodies by the immunized animals. In this study, the development of cationic polymeric nanoparticles of poly(lactic acid) aimed to create a modified delivery system for peptides and proteins of T. serrulatus venom, able to enhance the production of serum antibodies against the scorpion toxins. The cationic nanoparticles were obtained by a low energy nanoprecipitation, after study of the parameters’ variations effects over the physicochemical properties of the particles. The surface functionalization of the nanoparticles with the hyperbranched polyethyleneimine was proved by zeta potential analysis and enabled the adsorption by electrostatic interaction of different types of proteins. The protein loading efficiency of 40-80 % to bovine serum albumin (BSA) and 100 % to scorpion venom peptides evaluated by spectrophotometry and polyacrylamide gel electrophoresis confirmed the success of the selected parameters established for obtainment of nanoparticles, produced with size between 100 to 250 nm. The atomic force microscopy analysis and in vitro release showed that the spherical nanoparticles provided a sustained release profile of proteins by diffusion mechanism, demonstrating the potential for application of the nanoparticles in vivo.
Resumo:
Snakebites are a serious public health problem in tropical and subtropical countries and Bothrops genus is responsible for the accidents in Brazil and throughout Latin America (90% of cases). The local effects (pain, edema, hemorrhage and myonecrosis) and systemic (cardiovascular alterations, shock and blood clotting disorders) caused by the venom of Bothrops are due to the numerous protein and non-protein components, which are part of the constitution of the poison. The only form of therapy is scientifically validated antivenom serum therapy which, however, is not effective with respect to local effects produced, risk of immunological reactions, high cost and difficult access in some regions. Thus, the search for new alternatives to serum therapy becomes important, and in this context, many medicinal plants have been highlighted by the popular use as antiophidic. Among these plants, we can mention the species Jatropha mollissima (Euphorbiaceae) which has popular use in traditional medicine as antiophidic, anti-inflammatory, antimicrobial and antipyretic. Therefore, this study aims to evaluate the neutralizing potential of local effects induced by the venom of Bothrops erythromelas and Bothrops jararaca with the aqueous extract of the leaves of J. mollissima. The leaf extracts were prepared by decoction, fractionated (by liquid-liquid partition) and characterized by thin layer chromatography (TLC) and High Performance Liquid Chromatography (HPLC). Antiophidic activity of the extract was evaluated in model of paw edema, peritonitis, bleeding and myotoxicity induced by venoms of B. jararaca and B. erythromelas. In all models, the extract was evaluated by intraperitoneal route at the doses of 50, 100 and 200 mg/kg, administered 30 minutes prior to injection of the venom (pretreatment protocol). Stains suggestive of the presence of flavonoids: apigenin, luteolin, orientin, isoorientin, vitexin and vitexin-2-O-rhamnoside were detected in the extract by co-CCD. By means of HPLC were identified isoorientin, orientin, vitexin and isovitexin. All tested doses of J. mollissima extract reduced the paw edema induced by the venom with intensity similar to dexamethasone. The aqueous extract of J. mollissima leaves on all evaluated doses, inhibited cell migration induced by B. jararaca and B. erythromelas promoting inhibition of recruitment of mononuclear cells and the polymorphonuclear cells. Local bleeding induced by B. jararaca venom was significantly inhibited by the extract. Both venoms were inhibited by the extract in myotoxic activity. These results indicate that the aqueous extract of J. mollissima leaves have snakebite potential, particularly with respect to local effects, which may justify the use of this plant in traditional medicine and complementary therapy as anti-venom serum.
Resumo:
Snakebites are a serious public health problem in tropical and subtropical countries and Bothrops genus is responsible for the accidents in Brazil and throughout Latin America (90% of cases). The local effects (pain, edema, hemorrhage and myonecrosis) and systemic (cardiovascular alterations, shock and blood clotting disorders) caused by the venom of Bothrops are due to the numerous protein and non-protein components, which are part of the constitution of the poison. The only form of therapy is scientifically validated antivenom serum therapy which, however, is not effective with respect to local effects produced, risk of immunological reactions, high cost and difficult access in some regions. Thus, the search for new alternatives to serum therapy becomes important, and in this context, many medicinal plants have been highlighted by the popular use as antiophidic. Among these plants, we can mention the species Jatropha mollissima (Euphorbiaceae) which has popular use in traditional medicine as antiophidic, anti-inflammatory, antimicrobial and antipyretic. Therefore, this study aims to evaluate the neutralizing potential of local effects induced by the venom of Bothrops erythromelas and Bothrops jararaca with the aqueous extract of the leaves of J. mollissima. The leaf extracts were prepared by decoction, fractionated (by liquid-liquid partition) and characterized by thin layer chromatography (TLC) and High Performance Liquid Chromatography (HPLC). Antiophidic activity of the extract was evaluated in model of paw edema, peritonitis, bleeding and myotoxicity induced by venoms of B. jararaca and B. erythromelas. In all models, the extract was evaluated by intraperitoneal route at the doses of 50, 100 and 200 mg/kg, administered 30 minutes prior to injection of the venom (pretreatment protocol). Stains suggestive of the presence of flavonoids: apigenin, luteolin, orientin, isoorientin, vitexin and vitexin-2-O-rhamnoside were detected in the extract by co-CCD. By means of HPLC were identified isoorientin, orientin, vitexin and isovitexin. All tested doses of J. mollissima extract reduced the paw edema induced by the venom with intensity similar to dexamethasone. The aqueous extract of J. mollissima leaves on all evaluated doses, inhibited cell migration induced by B. jararaca and B. erythromelas promoting inhibition of recruitment of mononuclear cells and the polymorphonuclear cells. Local bleeding induced by B. jararaca venom was significantly inhibited by the extract. Both venoms were inhibited by the extract in myotoxic activity. These results indicate that the aqueous extract of J. mollissima leaves have snakebite potential, particularly with respect to local effects, which may justify the use of this plant in traditional medicine and complementary therapy as anti-venom serum.
Resumo:
CHAPTER II: Snake venoms are a complex mixture of organic and inorganic compounds, proteins and peptides such as aminotransferases, acetylcholinesterase, hyaluronidases, L-amino acid oxidase, phospholipase A2, metalloproteases, serine proteases, lectins, disintegrins, and others. Phospholipase A2 directly or indirectly influence the pathophysiological effect on envenomation, as well as their participation in the digestion of the prey. They have several other activities such as hemolytic indirect action, cardiotoxicity, aggregating of platelets, anticoagulant, edema, myotoxic and inflammatory activities. In this work, we describe the functional characterization of BaltMTx, a PLA2 from Bothrops alternatus that inhibits platelet aggregation and present bactericidal effect. The purification of BaltMTx was carried out through three chromatographic steps (ion-exchange on a DEAE-Sephacel column, followed by hydrophobic chromatography on Phenyl–Sepharose and affinity chromatography on HiTrap™ Heparin HP). The protein was purified to homogeneity as judged by its migration profile in SDS–PAGE stained with coomassie blue, and showed a molecular mass of about 15 kDa under reducing conditions and approximately 25 kDa in non-reducing conditions. BaltMTx showed a rather specific inhibitory effect on platelet aggregation induced by epinephrine in human platelet-rich plasma in a dose-dependent manner, whereas it had little or no effect on platelet aggregation induced by collagen or adenosine diphosphate. BaltMTx also showed antibacterial activity against Staphylococcus aureus and Escherichia coli. High concentrations of BatlMTx stimulated the proliferation of Leishmania (Leishmania) infantum and Leishmania (Viania) braziliensis. BaltMTx induced production of inflammatory mediators such as IL-10, IL-12, TNF-α and NO. BaltMTx could be of medical interest as a new tool for the development of novel therapeutic agents for the prevention and treatment of thrombotic disorders as well as bactericidal agent.
Resumo:
Fasciola hepatica, commonly known as liver fluke, is a trematode which causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterisation of FhTeg glycosylation using lectin microarrays to characterise carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. While some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components which could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine.
Resumo:
A 67-year-old woman developed severe edema of her right hand and forearm, for which she was treated with antibiotics, without benefit. The echography excluded a venous thrombosis. Subsequently, she referred a wasp sting before the development of the edema. Specific Hymenoptera venom immunoglobulin E (IgE) was found to be positive for paper wasp and yellow jacket. A large local reaction (LLR) was diagnosed due to the hymenoptera sting. Self-injectable epinephrine was prescribed for possible, though unlikely, systemic reactions following hymenoptera stings.
Resumo:
Oxidative refolding is one of the key challenges hampering the development of peptide based compounds as therapeutics. The correct refolding for three disulfide peptide like w-Conotoxi n MVIIA is difficult and crucial for biological activity. This work advanced knowledge of chemical and biological for improve oxidative refolding of synthetic w-Conotoxi n MVIIA in base of Conus magus venom. The present study aimed to set up an appropriate and effective protocols for refolding of disulfide-rich w-Conotoxin MVIIA. In this study, the crude peptide was protected with Acm group, according to the right amino acid sequences (Synthesized by Australian Company). The crude peptide was purified by H PLC. To prepare the peptide to refolding, innovative deprotection applied molar ratio (AMR) method was performed based on mercury. Accuracy of deprotection was approved by reverse phase chromatography. The deprotected target peptide (omega-conotoxin) was determined by SDS-PAGE. Then the Oxidative refolding of target peptide was performed in six protocol based on Guanidinium chloride and oxidized and reduced Glutathione. Analgesic effect of refolded peptide was surveyed with formalin test in mice Balb/c. Non neurotoxic effects of target peptides were survey with ICV injection in mice model (C57/BL6). The innovative deprotection protocol performed based on the best ratio of mercury/2-mercaptoethanol adjusted to 1mg/10p1 in 90 minute. The results showed the yield and purity of omega-conotoxin MVIIA as 93 and 95%, respectively. Refolding of 40 mg omega Conotoxin with GSSG and GSH on ratio of 10:1 and 20 mM ammonium acetate showed the best analgesic effect compared with the other methods. The result showed 95.5% yield and 98% purity of omega-conotoxin MVIIA in this refolding method. Related refolding method reduced 85% pain in experimented mice using 7 ng of the peptide. That was 71.5 fold stronger than morphine and 2 times than standard Prialt®. And it was not neurotoxic in mice. In this study, refolding method for omega-conotoxin MVIIA was optimized in the fourth factor including: reducing the time, amount and number of reagent and increase the efficiency. We introduced new method for deprotection of omega-conotoxin MVIIA. Effective, economic and applied refolding and deprotecti on method was performed in this research may al so be applied to similar omega conotoxin peptides.
Resumo:
In Brazil, accidents with scorpions are considered of medical importance, not only by the high incidence, but also for the potentiality of the venom from some species in determining severe clinical conditions. Tityus stigmurus is a widely distributed scorpion species in Northeastern Brazil and known to cause severe human envenomations, inducing pain, hyposthesia, edema, erythema, paresthesia, headaches and vomiting. The present study uses a transcriptomic approach to characterize the molecular repertoire from the non-stimulated venom gland of Tityus stigmurus scorpion. A cDNA library was constructed and 540 clones were sequenced and grouped into 37 clusters, with more than one EST (expressed sequence tag) and 116 singlets. Forty-one percent of ESTs belong to recognized toxin-coding sequences, with antimicrobial toxins (AMP-like) the most abundant transcripts, followed by alfa KTx- like, beta KTx-like, beta NaTx-like and alfa NaTx-like. Our analysis indicated that 34% include other possible venom molecules , whose transcripts correspond to anionic peptides, hypothetical secreted peptides, metalloproteinases, cystein-rich peptides and lectins. Fifteen percent of ESTs are similar to cellular transcripts. Sequences without good matches corresponded to 11%. This investigation provides the first global view of cDNAs from Tityus stigmurus. This approach enables characterization of a large number of venom gland component molecules, which belong either to known or atypical types of venom peptides and proteins from the Buthidae family
Resumo:
Cnidarians are often considered simple animals, but the more than 13,000 estimated species (e.g., corals, hydroids and jellyfish) of the early diverging phylum exhibit a broad diversity of forms, functions and behaviors, some of which are demonstrably complex. In particular, cubozoans (box jellyfish) are cnidarians that have evolved a number of distinguishing features. Some cubozoan species possess complex mating behaviors or particularly potent stings, and all possess well-developed light sensation involving image-forming eyes. Like all cnidarians, cubozoans have specialized subcellular structures called nematocysts that are used in prey capture and defense. The objective of this study is to contribute to the development of the box jellyfish Alatina alata as a model cnidarian. This cubozoan species offers numerous advantages for investigating morphological and molecular traits underlying complex processes and coordinated behavior in free-living medusozoans (i.e., jellyfish), and more broadly throughout Metazoa. First, I provide an overview of Cnidaria with an emphasis on the current understanding of genes and proteins implicated in complex biological processes in a few select cnidarians. Second, to further develop resources for A. alata, I provide a formal redescription of this cubozoan and establish a neotype specimen voucher, which serve to stabilize the taxonomy of the species. Third, I generate the first functionally annotated transcriptome of adult and larval A. alata tissue and apply preliminary differential expression analyses to identify candidate genes implicated broadly in biological processes related to prey capture and defense, vision and the phototransduction pathway and sexual reproduction and gametogenesis. Fourth, to better understand venom diversity and mechanisms controlling venom synthesis in A. alata, I use bioinformatics to investigate gene candidates with dual roles in venom and digestion, and review the biology of prey capture and digestion in cubozoans. The morphological and molecular resources presented herein contribute to understanding the evolution of cubozoan characteristics and serve to facilitate further research on this emerging cubozoan model.
Resumo:
Vocal differentiation is widely documented in birds and mammals but has been poorly investigated in other vertebrates, including fish, which represent the oldest extant vertebrate group. Neural circuitry controlling vocal behaviour is thought to have evolved from conserved brain areas that originated in fish, making this taxon key to understanding the evolution and development of the vertebrate vocal-auditory systems. This study examines ontogenetic changes in the vocal repertoire and whether vocal differentiation parallels auditory development in the Lusitanian toadfish Halobatrachus didactylus (Batrachoididae). This species exhibits a complex acoustic repertoire and is vocally active during early development. Vocalisations were recorded during social interactions for four size groups (fry: <2 cm; small juveniles: 2-4 cm; large juveniles: 5-7 cm; adults >25 cm, standard length). Auditory sensitivity of juveniles and adults was determined based on evoked potentials recorded from the inner ear saccule in response to pure tones of 75-945 Hz. We show an ontogenetic increment in the vocal repertoire from simple broadband-pulsed 'grunts' that later differentiate into four distinct vocalisations, including low-frequency amplitude-modulated 'boatwhistles'. Whereas fry emitted mostly single grunts, large juveniles exhibited vocalisations similar to the adult vocal repertoire. Saccular sensitivity revealed a three-fold enhancement at most frequencies tested from small to large juveniles; however, large juveniles were similar in sensitivity to adults. We provide the first clear evidence of ontogenetic vocal differentiation in fish, as previously described for higher vertebrates. Our results suggest a parallel development between the vocal motor pathway and the peripheral auditory system for acoustic social communication in fish.