994 resultados para Test de matrices progresivas
Resumo:
Animals frequently engage in mutual displays that may allow or at least help decisions about the outcome of agonistic encounters with mutual benefit to the opponents. In fish these often involve lateral displays, with previous studies finding evidence of population-level lateralization with a marked preference for showing the right side and using the right eye. Because both opponents tend to show this preference a head to tail configuration is formed and is used extensively during the display phase. Here we tested the significance of these lateral displays by comparing displays to a mirror with those to a real opponent behind a transparent barrier. The frequency of displays was lower to a mirror but the individual displays were of greater duration indicating a slower pace of the interaction with a mirror. This suggests that fish respond to initiatives of real opponents but as mirror images do not initiate moves the focal fish only moves when it is ready to change position. However, lateralization was still found with mirrors, indicating that the right-side bias is a feature of the individual and not of the interaction between opponents. We discuss implications for ideas about the evolution of mutual cooperation and information exchange in contests, as well as the utility of the use of mirrors in the study of aggression in fish.
Resumo:
Gels obtained by complexation of octablock star polyethylene oxide/polypropylene oxide copolymers (Tetronic 90R4) with -cyclodextrin (-CD) were evaluated as matrices for drug release. Both molecules are biocompatible so they can be potentially applied to drug delivery systems. Two different types of matrices of Tetronic 90R4 and -CD were evaluated: gels and tablets. These gels are capable to gelifying in situ and show sustained erosion kinetics in aqueous media. Tablets were prepared by freeze-drying and comprising the gels. Using these two different matrices, the release of two model molecules, L-tryptophan (Trp), and a protein, bovine serum albumin (BSA), was evaluated. The release profiles of these molecules from gels and tablets prove that they are suitable for sustained delivery. Mathematical models were applied to the release curves from tablets to elucidate the drug delivery mechanism. Good correlations were found for the fittings of the release curves to different equations. The results point that the release of Trp from different tablets is always governed by Fickian diffusion, whereas the release of BSA is governed by a combination of diffusion and tablet erosion.
Resumo:
A commercial polymeric film (Parafilm M (R), a blend of a hydrocarbon wax and a polyolefin) was evaluated as a model membrane for microneedle (MN) insertion studies. Polymeric MN arrays were inserted into Parafilm M (R) (PF) and also into excised neonatal porcine skin. Parafilm M (R) was folded before the insertions to closely approximate thickness of the excised skin. Insertion depths were evaluated using optical coherence tomography (OCT) using either a force applied by a Texture Analyser or by a group of human volunteers. The obtained insertion depths were, in general, slightly lower, especially for higher forces, for PF than for skin. However, this difference was not a large, being less than the 10% of the needle length. Therefore, all these data indicate that this model membrane could be a good alternative to biological tissue for MN insertion studies. As an alternative method to OCT, light microscopy was used to evaluate the insertion depths of MN in the model membrane. This provided a rapid, simple method to compare different MN formulations. The use of Parafilm M (R), in conjunction with a standardised force/time profile applied by a Texture Analyser, could provide the basis for a rapid MN quality control test suitable for in-process use. It could also be used as a comparative test of insertion efficiency between candidate MN formulations.
Resumo:
As part of a UK-China science bridge project - a UK government funded initiative linking leading universities and businesses in selective partnering countries in 2009 a collaborative research programme was initiated between Queen's University and the Research Institute of High Performance Concrete (part of the Central Research Institute of Building and Construction) in Beijing.
For further details email b.magee@ulster.ac.uk
Resumo:
Objectives. To conduct a prospective evaluation to determine the utility of the BTA stat test in the detection of upper tract transitional cell carcinoma (UTTCC). Monitoring for UTTCC currently relies on invasive procedures such as upper tract imaging, ureteral washing cytology (UWC) and/or ureteroscopy, or voided urine cytology (VUC). The BTA stat test is a sensitive qualitative immunoassay that detects human complement factor H-related protein in voided urine.
Methods. A total of 81 patients participated, 27 with histopathologically confirmed UTTCC, 26 with upper tract calculi, and 28 with microscopic hematuria but no evidence of urologic disease. Voided specimens collected before surgery or treatment were tested with the BTA stat test and VUC. UWC was performed in specimens collected by a ureteral catheter.
Results. The BTA stat test was significantly more sensitive and specific than VUC or UWC. The overall sensitivity for each was 82%, 11%, and 48%; the specificity was 89%, 54%, and 33%. The positive predictive value for the BTA stat test was 79% and the negative predictive value was 91%, both the highest of the three tests.
Conclusions. The BTA stat test was superior to VUC and UWC in the detection of UTTCC. These results may support the adoption of a less aggressive follow-up policy when monitoring for UTTCC when the BTA stat result is negative. If cystoscopy is negative and the BTA stat test is positive, upper tract investigations should be expedited and, if the bladder is in place, bladder biopsies performed. (C) 2001, Elsevier Science Inc.
Resumo:
A PSS/E 32 model of a real section of the Northern Ireland electrical grid was dynamically controlled with Python 2.5. In this manner data from a proposed wide area monitoring system was simulated. The area is of interest as it is a weakly coupled distribution grid with significant distributed generation. The data was used to create an optimization and protection metric that reflected reactive power flow, voltage profile, thermal overload and voltage excursions. Step changes in the metric were introduced upon the operation of special protection systems and voltage excursions. A wide variety of grid conditions were simulated while tap changer positions and switched capacitor banks were iterated through; with the most desirable state returning the lowest optimization and protection metric. The optimized metric was compared against the metric generated from the standard system state returned by PSS/E. Various grid scenarios were explored involving an intact network and compromised networks (line loss) under summer maximum, summer minimum and winter maximum conditions. In each instance the output from the installed distributed generation is varied between 0 MW and 80 MW (120% of installed capacity). It is shown that in grid models the triggering of special protection systems is delayed by between 1 MW and 6 MW (1.5% to 9% of capacity), with 3.5 MW being the average. The optimization and protection metric gives a quantitative value for system health and demonstrates the potential efficacy of wide area monitoring for protection and control.
Resumo:
The test of modifications to quantum mechanics aimed at identifying the fundamental reasons behind the unobservability of quantum mechanical superpositions at the macroscale is a crucial goal of modern quantum mechanics. Within the context of collapse models, current proposals based on interferometric techniques for their falsification are far from the experimental state of the art. Here we discuss an alternative approach to the testing of quantum collapse models that, by bypassing the need for the preparation of quantum superposition states might help us addressing nonlinear stochastic mechanisms such as the one at the basis of the continuous spontaneous localization model.
Resumo:
Background: Diagnosis of meningococcal disease relies on recognition of clinical signs and symptoms that are notoriously non-specific, variable, and often absent in the early stages of the disease. Loop-mediated isothermal amplification (LAMP) has previously been shown to be fast and effective for the molecular detection of meningococcal DNA in clinical specimens. We aimed to assess the diagnostic accuracy of meningococcal LAMP as a near-patient test in the emergency department.
Methods: For this observational cohort study of diagnostic accuracy, children aged 0-13 years presenting to the emergency department of the Royal Belfast Hospital for Sick Children (Belfast, UK) with suspected meningococcal disease were eligible for inclusion. Patients underwent a standard meningococcal pack of investigations testing for meningococcal disease. Respiratory (nasopharyngeal swab) and blood specimens were collected from patients and tested with near-patient meningococcal LAMP and the results were compared with those obtained by reference laboratory tests (culture and PCR of blood and cerebrospinal fluid).
Findings: Between Nov 1, 2009, and Jan 31, 2012, 161 eligible children presenting at the hospital underwent the meningococcal pack of investigations and were tested for meningococcal disease, of whom 148 consented and were enrolled in the study. Combined testing of respiratory and blood specimens with use of LAMP was accurate (sensitivity 89% [95% CI 72-96], specificity 100% [97-100], positive predictive value 100% [85-100]; negative predictive value 98% [93-99]) and diagnostically useful (positive likelihood ratio 213 [95% CI 13-infinity] and negative likelihood ratio 0·11 [0·04-0·32]). The median time required for near-patient testing from sample to result was 1 h 26 min (IQR 1 h 20 min-1 h 32 min).
Interpretation: Meningococcal LAMP is straightforward enough for use in any hospital with basic laboratory facilities, and near-patient testing with this method is both feasible and effective. By contrast with existing UK National Institute of Health and Care Excellence guidelines, we showed that molecular testing of non-invasive respiratory specimens from children is diagnostically accurate and clinically useful.
Resumo:
Implementation of both design for durability and performance-based standards and specifications are limited by the lack of rapid, simple, science based test methods for characterising the transport properties and deterioration resistance of concrete. This paper presents developments in the application of electrical property measurements as a testing methodology to evaluate the relative performance of a range of concrete mixes. The technique lends itself to in-situ monitoring thereby allowing measurements to be obtained on the as-placed concrete. Conductivity measurements are presented for concretes with and without supplementary cementitious materials (SCM’s) from demoulding up to 350 days. It is shown that electrical conductivity measurements display a continual decrease over the entire test period and attributed to pore structure refinement due to hydration and pozzolanic reaction. The term formation factor is introduced to rank concrete performance in terms of is resistance to chloride penetration.
Resumo:
In the study of complex genetic diseases, the identification of subgroups of patients sharing similar genetic characteristics represents a challenging task, for example, to improve treatment decision. One type of genetic lesion, frequently investigated in such disorders, is the change of the DNA copy number (CN) at specific genomic traits. Non-negative Matrix Factorization (NMF) is a standard technique to reduce the dimensionality of a data set and to cluster data samples, while keeping its most relevant information in meaningful components. Thus, it can be used to discover subgroups of patients from CN profiles. It is however computationally impractical for very high dimensional data, such as CN microarray data. Deciding the most suitable number of subgroups is also a challenging problem. The aim of this work is to derive a procedure to compact high dimensional data, in order to improve NMF applicability without compromising the quality of the clustering. This is particularly important for analyzing high-resolution microarray data. Many commonly used quality measures, as well as our own measures, are employed to decide the number of subgroups and to assess the quality of the results. Our measures are based on the idea of identifying robust subgroups, inspired by biologically/clinically relevance instead of simply aiming at well-separated clusters. We evaluate our procedure using four real independent data sets. In these data sets, our method was able to find accurate subgroups with individual molecular and clinical features and outperformed the standard NMF in terms of accuracy in the factorization fitness function. Hence, it can be useful for the discovery of subgroups of patients with similar CN profiles in the study of heterogeneous diseases.
Resumo:
Durability of concrete structures is primarily dependent on the environmental influences, i.e. the penetration of aggressive substances in the structural element from the environment. Penetrability is an important durability indicator of concrete and by specifying different classes of penetrability of concrete it should be possible to design a structure with the required resistance to environmental loads. This chapter covers descriptions of the available and commonly applied in situ and laboratory, non-invasive and semi-invasive test methods for evaluating concrete penetrability properties.
Resumo:
Currently there is no reliable objective method to quantify the setting properties of acrylic bone cements within an operating theatre environment. Ultrasonic technology can be used to determine the acoustic properties of the polymerising bone cement, which are linked to material properties and provide indications of the physical and chemical changes occurring within the cement. The focus of this study was the critical evaluation of pulse-echo ultrasonic test method in determining the setting and mechanical properties of three different acrylic bone cement when prepared under atmospheric and vacuum mixing conditions. Results indicated that the ultrasonic pulse-echo technique provided a highly reproducible and accurate method of monitoring the polymerisation reaction and indicating the principal setting parameters when compared to ISO 5833 standard, irrespective of the acrylic bone cement or mixing method used. However, applying the same test method to predict the final mechanical properties of acrylic bone cement did not prove a wholly accurate approach. Inhomogeneities within the cement microstructure and specimen geometry were found to have a significant influence on mechanical property predictions. Consideration of all the results suggests that the non-invasive and non-destructive pulse-echo ultrasonic test method is an effective and reliable method for following the full polymerisation reaction of acrylic bone cement in real-time and then determining the setting properties within a surgical theatre environment. However the application of similar technology for predicting the final mechanical properties of acrylic bone cement on a consistent basis may prove difficult.
How subtle are the biases that shape the fidelity of the fossil record? A test using marine molluscs
Resumo:
Biases in preservation shape the fossil record, and therefore impact on our reconstructions of past environments and biodiversity. Given the intensive recent research in the general fields of taphonomy and exceptional preservation, surprisingly, fundamental questions remain unanswered about species-level variation in skeletal preservation potential at low taxonomic levels (e.g. between genera from the same family, or between taxa from related families) across myriad groups with multi-element skeletons. Polyplacophoran molluscs (chitons sensu lato) are known from the late Cambrian to Recent, and possess a distinctive articulated scleritome consisting of eight overlapping calcareous valves. The apparent uniformity of living chitons presents an ideal model to test the potential for taphonomic biases at the alpha-taxon level. The vast majority of fossil chitons are preserved as single valves; few exhibit body preservation or even an articulated shell series. An experimental taphonomic programme was conducted using the Recent polyplacophorans Lepidochitona cinerea and Tonicella marmorea (suborder Chitonina) and Acanthochitona crinita (Acanthochitonina). Experiments in a rock tumbler on disarticulated valves found differential resistance to abrasion between taxa; in one experiment 53.8-61.5% of Lepidochitona valves were recovered but 92% of those from Tonicella and 100% of elements from Acanthochitona. Chiton valves and even partly decayed carcasses are more resistant to transportation than their limited fossil record implies. Different species of living chitons have distinctly different preservation potential. This, problematically, does not correlate with obvious differences in gross valve morphology; some, but not all, of the differences correlate with phylogeny. Decay alone is sufficient to exacerbate differences in preservation potential of multi-element skeletons; some, but not all, of the variation that results is due to specimen size and the fidelity of the fossil record will thus vary intra-specifically (e.g. between ontogenetic stages) as well as inter-specifically.
Resumo:
Issues surrounding the misuse of prohibited and licensed substances in animals destined for food production and performance sport competition continue to be an enormous challenge to regulatory authorities charged with enforcing their control. Efficient analytical strategies are implemented to screen and confirm the presence of a wide range of exogenous substances in various biological matrices. However, such methods rely on the direct measurement of drugs and/or their metabolites in a targeted mode, allowing the detection of restricted number of compounds. As a consequence, emerging practices, in particular the use of natural hormones, designer drugs and low-dose cocktails, remain difficult to handle from a control point of view. A new SME-led FP7 funded project, DeTECH21, aims to overcome current limitations by applying an untargeted metabolomics approach based on liquid chromatography coupled to high resolution mass spectrometry and bioinformatic data analysis to identify bovine and equine animals which have been exposed to exogenous substances and assist in the identification of administered compounds. Markerbased strategies, dealing with the comprehensive analysis of metabolites present in a biological sample (urine/plasma/tissue), offer a reliable solution in the areas of food safety and animal sport doping control by effective, high-throughput and sensitive detection of exogenously administered agents. Therefore, the development of the first commercially available forensic test service based on metabolomics profiling will meet 21st century demands in animal forensics.