989 resultados para TeO2-ZnO-Na2O-K2O glasses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of vertically aligned zinc oxide nanowires (ZnO NW) using a simple vapor deposition method system is reported. The growth properties are studied as a function of the Au catalyst layer thickness, pressure, deposition temperature, and oxygen ratio. It was found that the diameter and density of the nanowires is controlled mostly by the growth temperature and pressure. The alignment of the nanowires depends on a combination of three factors including the pressure, temperature and the oxygen ratio. Our results implicates the growth occurs by a vapor liquid solid (VLS) process [1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart chemical sensor based on CMOS(complementary metal-oxide- semiconductor) compatible SOI(silicon on insulator) microheater platform was realized by facilitating ZnO nanowires growth on the small membrane at the relatively low temperature. Our SOI microheater platform can be operated at the very low power consumption with novel metal oxide sensing materials, like ZnO or SnO2 nanostructured materials which demand relatively high sensing temperature. In addition, our sol-gel growth method of ZnO nanowires on the SOI membrane was found to be very effective compared with ink-jetting or CVD growth techniques. These combined techniques give us the possibility of smart chemical sensor technology easily merged into the conventional semiconductor IC application. The physical properties of ZnO nanowire network grown by the solution-based method and its chemical sensing property also were reported in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc oxide is a versatile II-VI naturally n-type semiconductor that exhibits piezoelectric properties. By controlling the growth kinetics during a simple carbothermal reduction process a wide range of 1D nanostructures such as nanowires, nanobelts, and nanotetrapods have been synthesized. The driving force: for the nanostructure growth is the Zn vapour supersaturation and supply rate which, if known, can be used to predict and explain the type of crystal structure that results. A model which attempts to determine the Zn vapour concentration as a function of position in the growth furnace is described. A numerical simulation package, COMSOL, was used to simultaneously model the effects of fluid flow, diffusion and heat transfer in a tube furnace made specifically for ZnO nanostructure growth. Parameters such as the temperature, pressure, and flow rate are used as inputs to the model to show the effect that each one has on the Zn concentration profile. An experimental parametric study of ZnO nanostructure growth was also conducted and compared to the model predictions for the Zn concentration in the tube. © 2008 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lab-on-a-chip (LOC) is one of the most important microsystem applications with promise for use in microanalysis, drug development, diagnosis of illness and diseases etc. LOC typically consists of two main components: microfluidics and sensors. Integration of microfluidics and sensors on a single chip can greatly enhance the efficiency of biochemical reactions and the sensitivity of detection, increase the reaction/detection speed, and reduce the potential cross-contamination, fabrication time and cost etc. However, the mechanisms generally used for microfluidics and sensors are different, making the integration of the two main components complicated and increases the cost of the systems. A lab-on-a-chip system based on a single surface acoustic wave (SAW) actuation mechanism is proposed. SAW devices were fabricated on nanocrystalline ZnO thin films deposited on Si substrates using sputtering. Coupling of acoustic waves into a liquid induces acoustic streaming and motion of droplets. A streaming velocity up to ∼ 5cm/s and droplet pumping speeds of ∼lcm/s were obtained. It was also found that a higher order mode wave, the Sezawa wave is more effective in streaming and transportation of microdroplets. The ZnO SAW sensor has been used for prostate antigen/antibody biorecognition systems, demonstrated the feasibility of using a single actuation mechanism for lab-on-a-chip applications. © 2010 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to describe the growth and optimization of carbon nanotube (CNT) and CNT/Zinc Oxide nanostructures to produce novel electron sources. The emitters studied in this project are based on regular array of vertically aligned 5 μm height and 50 nm diameter CNTs with a pitch of 10 μm as described previously (1). Such a cathode design allows us to minimize electric field shielding effects and thus to help in optimizing the emitted current density. We have previously obtained a current density of 1 A/cm 2 from such arrays in DC mode, and over 12 A/cm2 in pulsed mode at RF frequencies. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc oxide (ZnO) thin films were deposited at high rates ( > 50 nm min-1) using a unique technique known as high target utilisation sputtering (HiTUS). The films obtained possess good crystallographic orientation, low surface roughness, very low stress and excellent piezoelectric properties. We have utilised the films to develop highly sensitive biosensors based on thickness longitudinal mode (TLM) thin film bulk acoustic resonators (FBARs). The FBARs have the fundamental TLM at a frequency near 1.5 GHz and quality factor Q higher than 1,000, which is one of the largest values ever reported for ZnO-based FBARs. Bovine Serum Albumin (BSA) solutions with different concentrations were placed on the top of different sets of identical FBARs and their responses to mass-loading from physically adsorbed protein coatings were investigated. These resonators demonstrated a high sensitivity and thus have a great potential as gravimetric sensors for biomedical applications. © 2011 Inderscience Enterprises Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication of high frequency acoustic wave devices requires thedevelopment of thin films of piezoelectric materials with improved morphologicaland electro-acoustical properties. In particular, the crystalline orientationof the films, surface morphology, film stress and electrical resistivity are keyissues for the piezoelectric response. In the work reported here, ZnO thinfilms were deposited at high rates (>50 nm/min) using a novel process knownas the High Target Utilisation Sputtering (HiTUS). The films deposited possessexcellent crystallographic orientation, high resistivity (>109ωm), and exhibit surface roughness and film stress one order of magnitudelower than films grown with standard magnetron sputtering. The electromechanicalcoupling coefficient of the films, kT, was precisely calculated byimplementing the resonant spectrum method, and was found to be at least 6%higher than any previously reported kT of magnetron sputtered filmsto the Authors' knowledge. The low film stress of the film is deemed as one ofthe most important factors responsible for the high k T valueobtained. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Film bulk acoustic resonator (FBAR) devices with carbon nanotube (CNT) electrodes directly grown on a ZnO film by thermal chemical vapor deposition have been fabricated. CNT electrodes possess a very low density and high acoustic impedance, which reduces the intrinsic mass loading effect resulting from the electrodes' weight and better confines the longitudinal acoustic standing waves inside the resonator, in turn providing a resonator with a higher quality factor. The influence of the CNTs on the frequency response of the FBAR devices was studied by comparing two identical sets of devices; one set comprised FBARs fabricated with chromium/ gold bilayer electrodes, and the second set comprised FBARs fabricated with CNT electrodes. It was found that the CNTs had a significant effect on attenuating traveling waves at the surface of the FBARs' membranes because of their high elastic stiffness. Three-dimensional finite element analysis of the devices fabricated was carried out, and the numerical simulations were consistent with the experimental results obtained. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics and dispersion of the distinct surface acoustic waves (SAWs) propagating in ZnO/GaAs heterostructures have been studied experimentally and theoretically. Besides the Rayleigh mode, strong Sezawa modes, which propagate confined in the overlayer, arise due to the smaller sound velocity in ZnO than in the substrate. The design parameters of the structure providing the strongest piezoelectric field at a given depth within the layered system for the different modes have been determined. The piezoelectric field of the Rayleigh mode is shown to be more than 10 times stronger at the interface region of the tailored ZnO/GaAs structure than at the surface region of the bulk GaAs, whereas the same comparison for the first Sezawa mode yields a factor of 2. This enhancement, together with the capacity of selecting waves with different piezoelectric and strain field depth profiles, will facilitate the development of SAW-modulated optoelectronic applications in GaAs-based systems. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a new strategy to make a full solid-state, flexible, dye-sensitized solar cell (DSSC) based on novel ionic liquid gel, organic dye, ZnO nanoparticles and carbon nanotube (CNT) thin film stamped onto a polyethylene terephthalate (PET) substrate. The CNTs serve both as the charge collector and as scaffolds for the growth of ZnO nanoparticles, where the black dye molecules are anchored. It opens up the possibility of developing a continuous roll to roll processing for THE mass production of DSSCs.