963 resultados para TNF- alpha
Resumo:
INTRODUCTION No definitive data are available regarding the value of switching to an alternative TNF antagonist in rheumatoid arthritis patients who fail to respond to the first one. The aim of this study was to evaluate treatment response in a clinical setting based on HAQ improvement and EULAR response criteria in RA patients who were switched to a second or a third TNF antagonist due to failure with the first one. METHODS This was an observational, prospective study of a cohort of 417 RA patients treated with TNF antagonists in three university hospitals in Spain between January 1999 and December 2005. A database was created at the participating centres, with well-defined operational instructions. The main outcome variables were analyzed using parametric or non-parametric tests depending on the level of measurement and distribution of each variable. RESULTS Mean (+/- SD) DAS-28 on starting the first, second and third TNF antagonist was 5.9 (+/- 2.0), 5.1 (+/- 1.5) and 6.1 (+/- 1.1). At the end of follow-up, it decreased to 3.3 (+/- 1.6; Delta = -2.6; p > 0.0001), 4.2 (+/- 1.5; Delta = -1.1; p = 0.0001) and 5.4 (+/- 1.7; Delta = -0.7; p = 0.06). For the first TNF antagonist, DAS-28-based EULAR response level was good in 42% and moderate in 33% of patients. The second TNF antagonist yielded a good response in 20% and no response in 53% of patients, while the third one yielded a good response in 28% and no response in 72%. Mean baseline HAQ on starting the first, second and third TNF antagonist was 1.61, 1.52 and 1.87, respectively. At the end of follow-up, it decreased to 1.12 (Delta = -0.49; p < 0.0001), 1.31 (Delta = -0.21, p = 0.004) and 1.75 (Delta = -0.12; p = 0.1), respectively. Sixty four percent of patients had a clinically important improvement in HAQ (defined as > or = -0.22) with the first TNF antagonist and 46% with the second. CONCLUSION A clinically significant effect size was seen in less than half of RA patients cycling to a second TNF antagonist.
Resumo:
Takayasu's arteritis is a granulomatous, large vessel vasculitis that affects the aorta, its major branches and the pulmonary arteries. Compelling evidence exists to support the notion that Takayasu's arteritis is a T-cell mediated process and that tumor necrosis factor alpha (TNFa) is an important factor in the pathogenesis of this disease. Moreover, encouraging results from recent studies support the use of anti-TNFa therapy for relapsing or resistant cases of Takayasu's arteritis. Here, however, we describe the case of two patients: one with seropositive rheumatoid arthritis, the other with HLA-B27 negative spondylarthropathy, who developed Takayasu's arteritis during treatment with TNFa inhibitors (adalimumab and golimumab respectively). This is the first report of Takayasu's arteritis in rheumatic patients under TNFa blocking agents which suggests the presence of different pathogenetic mechanism in a subgroup of patients with Takayasu's arteritis, as well as a potential role of TNFa blockers as triggers of this disease in some cases.
Resumo:
In this study, we evaluated whether human serum and lipoproteins, especially high-density lipoprotein (HDL), affected serum amyloid A (SAA)-induced cytokine release. We verified the effects of SAA on THP-1 cells in serum-free medium compared to medium containing human serum or lipoprotein-deficient serum. SAA-induced tumour necrosis factor-alpha (TNF-α) production was higher in the medium containing lipoprotein-deficient serum than in the medium containing normal human serum. The addition of HDL inhibited the SAA-induced TNF-α release in a dose-dependent manner. This inhibitory effect was specific for HDL and was not affected by low-density lipoprotein or very low-density lipoprotein. In human peripheral blood mononuclear cells, the inhibitory effect of HDL on TNF-α production induced by SAA was less pronounced. However, this effect was significant when HDL was added to lipoprotein-deficient medium. In addition, a similar inhibitory effect was observed for interleukin-1 beta release. These findings confirm the important role of HDL and support our previous hypothesis that HDL inhibits the effects of SAA during SAA transport in the bloodstream. Moreover, the HDL-induced reduction in the proinflammatory activity of SAA emphasizes the involvement of SAA in diseases, such as atherosclerosis, that are characterized by low levels of HDL.