965 resultados para TIGHT GAS. Low permeability. Hydraulic fracturing. Reservoir modeling. Numerical simulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Intrinsic equilibrium constants of 17 representative Brazilian Oxisols were estimated from potentiometric titration measuring the adsorption of H+ and OH− on amphoteric surfaces in suspensions of varying ionic strength. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. The former was fitted by calculating total site concentration from curve fitting estimates and pH-extrapolation of the intrinsic equilibrium constants to the PZNPC (hand calculation), considering one and two reactive sites, and by the FITEQL software. The latter was fitted only by FITEQL, with one reactive site. Soil chemical and physical properties were correlated to the intrinsic equilibrium constants. Both surface complexation models satisfactorily fit our experimental data, but for results at low ionic strength, optimization did not converge in FITEQL. Data were incorporated in Visual MINTEQ and they provide a modeling system that can predict protonation-dissociation reactions in the soil surface under changing environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to determine the location and relative strength of all transcription-factor binding sites in a genome is important both for a comprehensive understanding of gene regulation and for effective promoter engineering in biotechnological applications. Here we present a bioinformatically driven experimental method to accurately define the DNA-binding sequence specificity of transcription factors. A generalized profile was used as a predictive quantitative model for binding sites, and its parameters were estimated from in vitro-selected ligands using standard hidden Markov model training algorithms. Computer simulations showed that several thousand low- to medium-affinity sequences are required to generate a profile of desired accuracy. To produce data on this scale, we applied high-throughput genomics methods to the biochemical problem addressed here. A method combining systematic evolution of ligands by exponential enrichment (SELEX) and serial analysis of gene expression (SAGE) protocols was coupled to an automated quality-controlled sequence extraction procedure based on Phred quality scores. This allowed the sequencing of a database of more than 10,000 potential DNA ligands for the CTF/NFI transcription factor. The resulting binding-site model defines the sequence specificity of this protein with a high degree of accuracy not achieved earlier and thereby makes it possible to identify previously unknown regulatory sequences in genomic DNA. A covariance analysis of the selected sites revealed non-independent base preferences at different nucleotide positions, providing insight into the binding mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The relation between dietary carbohydrate: lipid ratio and the fuel mixture oxidized during 24 h was investigated in eleven healthy volunteers (six females, and five males) in a respiration chamber. Values of the fuel mixture oxidized were estimated by continuous indirect calorimetry and urinary nitrogen measurements. 2. The subjects, were first given a mixed diet for 7 d and spent the last 24 h of the 7 d period in a respiration chamber for continuous gas-exchange measurement. The fuels oxidized during 2.5 h or moderate exercise were also measured in the respiration chamber. After an interval of 2 weeks from the end of the mixed-diet period, the same subjects were given an isoenergetic high-carbohydrate low-fat diet for 7 d, and the same experimental regimen was repeated. 3. Dietary composition markedly influenced the fuel mixture oxidized during 24 h and this effect was still present 12 h after the last meal in the postabsorptive state. However, the diets had no influence on the substrates oxidized above resting levels during exercise. With both diets, the 24 h energy balance was slightly negative and the energy deficit was covered by lipid oxidation. 4. With the high-carbohydrate low-fat diet, the energy expenditure during sleep was found to be higher than that with the mixed diet. 5. It is concluded that: (a) the composition of the diet did not influence the fuel mixture utilized for moderate exercise, (b) the energy deficit calculated for a 24 h period was compensated by lipid oxidation irrespective of the carbohydrate content of the diet, (c) energy expenditure during sleep was found to be higher with the high-carbohydrate low-fat diet than with the mixed diet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

p-toluensulfonate doped polypyrrole (PPy), undergoes an electric-field induced reversible transition from an insulating state to a highly conductive one. The spatially average field can be as small as 200 V/cm, when the temperature of the sample is below 20 K. The applied electric field leads to a sharp jump in the value of the current to a value which is nearly five orders of magnitude higher than before. When the applied electric field is reduced to below a critical value, the system switches back to a low conductive state. The effect is reversible, symmetric in voltage, and reproducible for different samples. The switching is, we believe, an electronic glass melting transition and it is due to the disordered, highly charged granular nature of PPy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetically constructed microbial biosensors for measuring organic pollutants are mostly applied in aqueous samples. Unfortunately, the detection limit of most biosensors is insufficient to detect pollutants at low but environmentally relevant concentrations. However, organic pollutants with low levels of water solubility often have significant gas-water partitioning coefficients, which in principle makes it possible to measure such compounds in the gas rather than the aqueous phase. Here we describe the first use of a microbial biosensor for measuring organic pollutants directly in the gas phase. For this purpose, we reconstructed a bioluminescent Pseudomonas putida naphthalene biosensor strain to carry the NAH7 plasmid and a chromosomally inserted gene fusion between the sal promoter and the luxAB genes. Specific calibration studies were performed with suspended and filter-immobilized biosensor cells, in aqueous solution and in the gas phase. Gas phase measurements with filter-immobilized biosensor cells in closed flasks, with a naphthalene-contaminated aqueous phase, showed that the biosensor cells can measure naphthalene effectively. The biosensor cells on the filter responded with increasing light output proportional to the naphthalene concentration added to the water phase, even though only a small proportion of the naphthalene was present in the gas phase. In fact, the biosensor cells could concentrate a larger proportion of naphthalene through the gas phase than in the aqueous suspension, probably due to faster transport of naphthalene to the cells in the gas phase. This led to a 10-fold lower detectable aqueous naphthalene concentration (50 nM instead of 0.5 micro M). Thus, the use of bacterial biosensors for measuring organic pollutants in the gas phase is a valid method for increasing the sensitivity of these valuable biological devices.