986 resultados para T-lymphocytes
Resumo:
The membrane-bound form of Fas ligand (FasL) signals apoptosis in target cells through engagement of the death receptor Fas, whereas the proteolytically processed, soluble form of FasL does not induce cell death. However, soluble FasL can be rendered active upon cross-linking. Since the minimal extent of oligomerization of FasL that exerts cytotoxicity is unknown, we engineered hexameric proteins containing two trimers of FasL within the same molecule. This was achieved by fusing FasL to the Fc portion of immunoglobulin G1 or to the collagen domain of ACRP30/adiponectin. Trimeric FasL and hexameric FasL both bound to Fas, but only the hexameric forms were highly cytotoxic and competent to signal apoptosis via formation of a death-inducing signaling complex. Three sequential early events in Fas-mediated apoptosis could be dissected, namely, receptor binding, receptor activation, and recruitment of intracellular signaling molecules, each of which occurred independently of the subsequent one. These results demonstrate that the limited oligomerization of FasL, and most likely of some other tumor necrosis factor family ligands such as CD40L, is required for triggering of the signaling pathways.
Resumo:
A strategy to improve the immunogenicity of candidate vaccines is to trigger the innate immune system. Triggering of CD40 at the surface of dendritic cells (DC) is essential in the induction of an efficient immune response. Although CD40 agonist antibodies have been shown to be potent inducers of immune responses in experimental models, serious safety concerns have been raised for their use in humans. In addition, the production of soluble functional CD40 ligand has been challenging and the soluble form existing so far is not developed anymore. Here, we have evaluated the potency of a new soluble form of hexameric CD40 ligand (sCD40L) to serve as an adjuvant for anti-viral T cell responses. sCD40L was able to activate human DC and to enhance virus-specific memory T cell responses. These results demonstrate that this soluble form of CD40 ligand may serve as an adjuvant for T cell response and thus provide the rationale for its potential use in T cell based vaccine strategies.
Resumo:
Human B cell-activating factor (BAFF) induces mouse surface IgM+ B cells of the immature type from bone marrow and of the immature types 1 and 2 from spleen, as well as of the mature type from spleen to increased longevity in tissue culture. BAFF does so polyclonally and without inducing proliferation in any of these B cell subpopulations. BAFF induces phenotypic and functional maturation of immature to mature B cells so that all immature cells loose C1qRp (AA4.1, 493) expression and type 1 immature cells up-regulate IgD, CD21 and CD23. Immature B cells of types 1 and 2, upon pre-incubation with BAFF, change their reactiveness to Ig-specific antibodies so that they no longer enter apoptosis but now proliferate. However, BAFF does not seem to overcome negative selection of developing immature B cells in vitro.
Resumo:
Reduced expression of CD62L can identify tumor-specific T cells in lymph nodes draining murine tumors. Here, we examined whether this strategy could isolate tumor-specific T cells from vaccinated patients. Tumor vaccine-draining lymph node (TVDLN) T cells of seven patients were separated into populations with reduced (CD62LLow) or high levels of CD62L (CD62LHigh). Effector T cells generated from CD62LLow cells maintained or enriched the autologous tumor-specific type 1 cytokine response compared to unseparated TVDLN T cells in four of four patients showing tumor-specific cytokine secretion. Interestingly, effector T cells generated from CD62LLow or CD62LHigh TVDLN were polarized towards a dominant type 1 or type 2 cytokine profile, respectively. For CD62LLow T cells the type 1 cytokine profile appeared determined prior to culture. Since a tumor-specific type 1 cytokine profile appears critical for mediating anti-tumor activity in vivo, this approach might be used to isolate T cells for adoptive immunotherapy.
Resumo:
We have reported earlier that purified preparations of sheep fetal hemoglobin, but not adult hemoglobin, in concert with non-stimulatory doses of lipopolysaccharide (LPS) (lipid A), act cooperatively to regulate in vitro production of a number of cytokines, including TNFalpha, TGFbeta and IL-6 from murine and human leukocytes. Following in vivo treatment of mice with the same combination of hemoglobin and LPS, harvested spleen or peritoneal cells showed a similar augmented capacity to release these cytokines into culture supernatants. We report below that genetically cloned gamma-chain of human or sheep fetal hemoglobin, but not cloned alpha- or beta-chains, can produce this cooperative effect, as indeed can HPLC purified, heme-free, gamma-chains derived from cord blood fetal hemoglobin, and that purified haptoglobin completely abolishes the cooperative interaction.
Resumo:
The fungus Lentinus strigosus (Pegler 1983) (Polyporaceae, basidiomycete) was selected in a screen for inhibitory activity on Trypanosoma cruzi trypanothione reductase (TR). The crude extract of L. strigosus was able to completely inhibit TR at 20 µg/ml. Two triquinane sesquiterpenoids (dihydrohypnophilin and hypnophilin), in addition to two panepoxydol derivatives (neopanepoxydol and panepoxydone), were isolated using a bioassay-guided fractionation protocol. Hypnophilin and panepoxydone displayed IC50 values of 0.8 and 38.9 µM in the TR assay, respectively, while the other two compounds were inactive. The activity of hypnophilin was confirmed in a secondary assay with the intracellular amastigote forms of T. cruzi, in which it presented an IC50 value of 2.5 µ M. Quantitative flow cytometry experiments demonstrated that hypnophilin at 4 µM also reduced the proliferation of human peripheral blood monocluear cells (PBMC) stimulated with phytohemaglutinin, without any apparent interference on the viability of lymphocytes and monocytes. As the host immune response plays a pivotal role in the adverse events triggered by antigen release during treatment with trypanocidal drugs, the ability of hypnophilin to kill the intracellular forms of T. cruzi while modulating human PBMC proliferation suggests that this terpenoid may be a promising prototype for the development of new chemotherapeutical agents for Chagas disease.
Resumo:
The aim of this work was to study the difference in interferon gamma (IFN-gamma) production by T lymphocytes after early secretory antigen target 6 (ESAT-6) or purified protein derivate (PPD) stimulation in whole blood culture supernatants from children with suspected tuberculosis (TB) disease (n = 21), latent TB infection (n = 16) and negative controls (NC) (n = 22) from an endemic area in Brazil. The concentration of IFN-gamma (pg/ml) was measured by enzyme linked immunosorbent assay and the differences in the IFN-gamma levels for each group were compared and evaluated using an unpaired Student's t-test; p values < 0.05 were considered significant. Measurement of IFN-gamma levels after ESAT-6 stimulation raised the possibility of early diagnosis in the latent TB group (p = 0.0030). Nevertheless, the same group showed similar responses to the NC group (p > 0.05) after PPD stimulation. The IFN-gamma assay using ESAT-6 as an antigenic stimulus has the potential to be used as a tool for the immunodiagnosis of early TB in children.
Resumo:
Calophyllum brasiliense and Mammea americana (Clusiaceae) are two trees from the tropical rain forests of the American continent. A previous screening showed high trypanocidal activity in the extracts of these species. Several mammea-type coumarins, triterpenoids and biflavonoids were isolated from the leaves of C. brasiliense. Mammea A/AA was obtained from the fruit peels of M. americana. These compounds were tested in vitro against epimastigotes and trypomastigotes of Trypanosoma cruzi, the etiologic agent of Chagas disease. The most potent compounds were mammea A/BA, A/BB, A/AA, A/BD and B/BA, with MC100 values in the range of 15 to 90 g/ml. Coumarins with a cyclized ,-dimethylallyl substituent on C-6, such as mammea B/BA, cyclo F + B/BB cyclo F, and isomammeigin, showed MC100 values > 200 g/ml. Several active coumarins were also tested against normal human lymphocytes in vitro, which showed that mammea A/AA and A/BA were not toxic. Other compounds from C. brasiliense, such as the triterpenoids, friedelin, canophyllol, the biflavonoid amentoflavone, and protocatechuic and shikimic acids, were inactive against the epimastigotes. The isopropylidenedioxy derivative of shikimic acid was inactive, and its structure was confirmed by X-ray diffraction. Our results suggest that mammea-type coumarins could be a valuable source of trypanocidal compounds.
Resumo:
ABSTRACT¦Naturally acquired tumor-specific T-cells can be detected in most advanced cancer patients.¦Yet, they often fail to control or eliminate the disease, in contrast to many virus-specific CD8¦T lymphocytes. Therapeutic vaccines aim at inducing and boosting specific T-cells mediated¦immunity to reduce tumor burden. The properties of CD8 T-cells required for protection from¦infectious disease and cancer are only partially characterized.¦The objectives of this study were to assess effector functions, stage of differentiation and¦clonotype selection of tumor-reactive T lymphocytes following peptide vaccination in¦melanoma patients over time. Results were compared to protective viral-specific T-cell¦responses found in healthy individuals. We also characterized dominant versus low/non¦dominant T-cell clonotypes with the aim to further understand the in vivo function of each set¦of frequency-based specific T-cells.¦Here we developed and applied a novel approach for molecular and functional analysis of¦single T lymphocytes ex vivo. T-cell receptor (TCR) clonotype mapping revealed rapid¦selection and expansion of co-dominant T-cell clonotypes, which made up the majority of the¦highly differentiated "effector" T-cells, but only 25% of the less differentiated "effectormemory"¦cells, mostly composed of non-dominant clonotypes. Moreover, we show that¦advanced effector cell differentiation was indeed clonotype-dependent. Surprisingly, however,¦the acquisition of effector functions (cytokine production, killing) was clonotype-independent.¦Vaccination of melanoma patients with native peptide induced competent effector function in¦both dominant and non-dominant clonotypes, suggesting that most if not all clonotypes¦participating in a T-cell response have the potential to develop equal functional competence.¦In contrast, many T-cells remained poorly functional after vaccination with analog peptide,¦despite similar clonotype-dependent differentiation. Our findings show that the type of¦peptide vaccine has a critical influence on the selection and functional activation of the¦clonotypic T-cell repertoire. They also show that systematic assessment of individual T-cells¦identifies the cellular basis of immune responses, contributing to the rational development of¦vaccines.
Resumo:
PURPOSE: To redirect an ongoing antiviral T-cell response against tumor cells in vivo, we evaluated conjugates consisting of antitumor antibody fragments coupled to class I MHC molecules loaded with immunodominant viral peptides. EXPERIMENTAL DESIGN: First, lymphochoriomeningitis virus (LCMV)-infected C57BL/6 mice were s.c. grafted on the right flank with carcinoembryonic antigen (CEA)-transfected MC38 colon carcinoma cells precoated with anti-CEA x H-2D(b)/GP33 LCMV peptide conjugate and on the left flank with the same cells precoated with control anti-CEA F(ab')(2) fragments. Second, influenza virus-infected mice were injected i.v., to induce lung metastases, with HER2-transfected B16F10 cells, coated with either anti-HER2 x H-2D(b)/NP366 influenza peptide conjugates, or anti-HER2 F(ab')(2) fragments alone, or intact anti-HER2 monoclonal antibody. Third, systemic injections of anti-CEA x H-2D(b) conjugates with covalently cross-linked GP33 peptides were tested for the growth inhibition of MC38-CEA(+) cells, s.c. grafted in LCMV-infected mice. RESULTS: In the LCMV-infected mice, five of the six grafts with conjugate-precoated MC38-CEA(+) cells did not develop into tumors, whereas all grafts with F(ab')(2)-precoated MC38-CEA(+) cells did so (P = 0.0022). In influenza virus-infected mice, the group injected with cells precoated with specific conjugate had seven times less lung metastases than control groups (P = 0.0022 and P = 0.013). Most importantly, systemic injection in LCMV-infected mice of anti-CEA x H-2D(b)/cross-linked GP33 conjugates completely abolished tumor growth in four of five mice, whereas the same tumor grew in all five control mice (P = 0.016). CONCLUSION: The results show that a physiologic T-cell antiviral response in immunocompetent mice can be redirected against tumor cells by the use of antitumor antibody x MHC/viral peptide conjugates.
Resumo:
Next-generation sequencing offers an unprecedented opportunity to jointly analyze cellular and viral transcriptional activity without prerequisite knowledge of the nature of the transcripts. SupT1 cells were infected with a vesicular stomatitis virus G envelope protein (VSV-G)-pseudotyped HIV vector. At 24 h postinfection, both cellular and viral transcriptomes were analyzed by serial analysis of gene expression followed by high-throughput sequencing (SAGE-Seq). Read mapping resulted in 33 to 44 million tags aligning with the human transcriptome and 0.23 to 0.25 million tags aligning with the genome of the HIV-1 vector. Thus, at peak infection, 1 transcript in 143 is of viral origin (0.7%), including a small component of antisense viral transcription. Of the detected cellular transcripts, 826 (2.3%) were differentially expressed between mock- and HIV-infected samples. The approach also assessed whether HIV-1 infection modulates the expression of repetitive elements or endogenous retroviruses. We observed very active transcription of these elements, with 1 transcript in 237 being of such origin, corresponding on average to 123,123 reads in mock-infected samples (0.40%) and 129,149 reads in HIV-1-infected samples (0.45%) mapping to the genomic Repbase repository. This analysis highlights key details in the generation and interpretation of high-throughput data in the setting of HIV-1 cellular infection.
Resumo:
alphabeta and gammadelta T cells originate from a common, multipotential precursor population in the thymus, but the molecular mechanisms regulating this lineage-fate decision are unknown. We have identified Sox13 as a gammadelta-specific gene in the immune system. Using Sox13 transgenic mice, we showed that this transcription factor promotes gammadelta T cell development while opposing alphabeta T cell differentiation. Conversely, mice deficient in Sox13 expression exhibited impaired development of gammadelta T cells but not alphabeta T cells. One mechanism of SOX13 function is the inhibition of signaling by the developmentally important Wnt/T cell factor (TCF) pathway. Our data thus reveal a dominant pathway regulating the developmental fate of these two lineages of T lymphocytes.
Resumo:
Mouse mammary tumor virus (MMTV) is a retrovirus which can induce mammary carcinomas in mice late in life by activation of proto-oncogenes after integration in their vicinity. Surprisingly, it requires a functional immune system to achieve efficient infection of the mammary gland. This requirement became clear when it was discovered that it has developed strategies to exploit the immune response. Instead of escaping immune detection, it induces a vigorous polyclonal T-B interaction which is required to induce a chronic infection. This is achieved by activating and then infecting antigen presenting cells (B cells), expressing a superantigen on their cell surface and triggering unlimited help by the large number of superantigen-specific T cells. The end result of this strong T-B interaction is the proliferation and differentiation of the infected B cells leading to their long term survival.
Resumo:
Background. DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Methods. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results. Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. Conclusions. An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity.
Resumo:
BACKGROUND Protein-bound polysaccharide (PSK) is derived from the CM-101 strain of the fungus Coriolus versicolor and has shown anticancer activity in vitro and in in vivo experimental models and human cancers. Several randomized clinical trials have demonstrated that PSK has great potential in adjuvant cancer therapy, with positive results in the adjuvant treatment of gastric, esophageal, colorectal, breast and lung cancers. These studies have suggested the efficacy of PSK as an immunomodulator of biological responses. The precise molecular mechanisms responsible for its biological activity have yet to be fully elucidated. METHODS The in vitro cytotoxic anti-tumour activity of PSK has been evaluated in various tumour cell lines derived from leukaemias, melanomas, fibrosarcomas and cervix, lung, pancreas and gastric cancers. Tumour cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of PSK on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in PSK-treated cells. RESULTS PSK showed in vitro inhibition of tumour cell proliferation as measured by BrdU incorporation and viable cell count. The inhibition ranged from 22 to 84%. Inhibition mechanisms were identified as cell cycle arrest, with cell accumulation in G0/G1 phase and increase in apoptosis and caspase-3 expression. These results indicate that PSK has a direct cytotoxic activity in vitro, inhibiting tumour cell proliferation. In contrast, PSK shows a synergistic effect with IL-2 that increases PBL proliferation. CONCLUSION These results indicate that PSK has cytotoxic activity in vitro on tumour cell lines. This new cytotoxic activity of PSK on tumour cells is independent of its previously described immunomodulatory activity on NK cells.