993 resultados para Surface water resources
Resumo:
In the early 1990's, outline designs for two wetland nature reserves were being prepared: the Teeside International Nature Reserve (TINR) and the Cardiff Bay Barrage Environmental Compensation Measures at Redwick, Gwent. The initial design for both proposals identified reedbed as a desirable habitat for establishment. The initial design works identified the importance of reedbed evapotranspiration [ET(Reed)] within the water budget, however, literature searches identified a paucity of information on this parameter. Field experiments for the measurement of ET(Reed) from Phragmites australis are described for three sites distributed across England and Wales. Reference Crop Evapotranspiration (ETo) was calculated using techniques recommended by the Food and Agriculture Organisation. A technique for the calculation of a reedbed crop coefficient [Kc(Reed)[, from ET(Reed) and ETo data is discussed. Kc(Reed) values produced in the project were found to be similar to those developed previously in continental Europe. Mean monthly and crop development stage Kc(Reed) values are presented which are applicable in the UK and possibly worldwide. A conceptual hydrological model of surface water fed reedbed systems is developed, and used to calculate the hydrological sustainability of reedbed creation areas in the UK. Finally, the water budget model is verified using data from a small clay catchment located on the TINR. In addition, a methodology is developed for the hydrological design of surface water fed reedbed systems, and recommendations required for the feasibility, design and establishment stage of reedbed creation sites. Further research needs are also identified.
Resumo:
A broad based approach has been used to assess the impact of discharges to rivers from surface water sewers, with the primary objective of determining whether such discharges have a measurable impact on water quality. Three parameters, each reflecting the effects of intermittent pollution, were included in a field work programme of biological and chemical sampling and analysis which covered 47 sewer outfall sites. These parameters were the numbers and types of benthic macroinvertebrates upstream and downstream of the outfalls, the concentrations of metals in sediments, and the concentrations of metals in algae upstream and downstream of the outfalls. Information on the sewered catchments was collected from Local Authorities and by observation of the time of sampling, and includes catchment areas, land uses, evidence of connection to the foul system, and receiving water quality classification. The methods used for site selection, sampling, laboratory analysis and data analysis are fully described, and the survey results presented. Statistical and graphical analysis of the biological data, with the aid of BMWP scores, showed that there was a small but persistent fall in water quality downstream of the studied outfalls. Further analysis including the catchment information indicated that initial water quality, sewered catchment size, receiving stream size, and catchment land use were important factors in determining the impact. Finally, the survey results were used to produce guidelines for the estimation of surface water sewer discharge impacts from knowledge of the catchment characteristics, so that planning authorities can consider water quality when new drainage systems are designed.
Resumo:
Techniques are developed for the visual interpretation of drainage features from satellite imagery. The process of interpretation is formalised by the introduction of objective criteria. Problems of assessing the accuracy of maps are recognized, and a method is developed for quantifying the correctness of an interpretation, in which the more important features are given an appropriate weight. A study was made of imagery from a variety of landscapes in Britain and overseas, from which maps of drainage networks were drawn. The accuracy of the mapping was assessed in absolute terms, and also in relation to the geomorphic parameters used in hydrologic models. Results are presented relating the accuracy of interpretation to image quality, subjectivity and the effects of topography. It is concluded that the visual interpretation of satellite imagery gives maps of sufficient accuracy for the preliminary assessment of water resources, and for the estimation of geomorphic parameters. An examination is made of the use of remotely sensed data in hydrologic models. It is proposed that the spectral properties of a scene are holistic, and are therefore more efficient than conventional catchment characteristics. Key hydrologic parameters were identified, and were estimated from streamflow records. The correlation between hydrologic variables and spectral characteristics was examined, and regression models for streamflow were developed, based solely on spectral data. Regression models were also developed using conventional catchment characteristics, whose values were estimated using satellite imagery. It was concluded that models based primarily on variables derived from remotely sensed data give results which are as good as, or better than, models using conventional map data. The holistic properties of remotely sensed data are realised only in undeveloped areas. In developed areas an assessment of current land-use is a more useful indication of hydrologic response.
River basin surveillance using remotely sensed data: a water resources information management system
Resumo:
This thesis describes the development of an operational river basin water resources information management system. The river or drainage basin is the fundamental unit of the system; in both the modelling and prediction of hydrological processes, and in the monitoring of the effect of catchment management policies. A primary concern of the study is the collection of sufficient and sufficiently accurate information to model hydrological processes. Remote sensing, in combination with conventional point source measurement, can be a valuable source of information, but is often overlooked by hydrologists, due to the cost of acquisition and processing. This thesis describes a number of cost effective methods of acquiring remotely sensed imagery, from airborne video survey to real time ingestion of meteorological satellite data. Inexpensive micro-computer systems and peripherals are used throughout to process and manipulate the data. Spatial information systems provide a means of integrating these data with topographic and thematic cartographic data, and historical records. For the system to have any real potential the data must be stored in a readily accessible format and be easily manipulated within the database. The design of efficient man-machine interfaces and the use of software enginering methodologies are therefore included in this thesis as a major part of the design of the system. The use of low cost technologies, from micro-computers to video cameras, enables the introduction of water resources information management systems into developing countries where the potential benefits are greatest.
Resumo:
Throughout the Biscayne Bay watershed, existing coastal wetland communities have been cut off from sheet flow for decades. With the expectation that reconnection of these wetlands to upstream water sources would alter existing hydrologic conditions and recreate a more natural sheet flow to Biscayne National Park, a demonstration project on freshwater rediversion was undertaken. The objectives of the project were to document the effects of freshwater diversion on: (a) swamp and nearshore water chemistry and hydrology; (b) soil development processes; (c) macrophyte and benthic algal community composition, structure and production; (d) abundance of epiphytic and epibenthic invertebrates; (e) zonation, production, and phenology of primary producers in the nearshore environment, and (f) exchanges of nutrients and particulates between nearshore and mangrove ecosystems.
Resumo:
The Bahamas is a small island nation that is dealing with the problem of freshwater shortage. All of the country’s freshwater is contained in shallow lens aquifers that are recharged solely by rainfall. The country has been struggling to meet the water demands by employing a combination of over-pumping of aquifers, transport of water by barge between islands, and desalination of sea water. In recent decades, new development on New Providence, where the capital city of Nassau is located, has created a large area of impervious surfaces and thereby a substantial amount of runoff with the result that several of the aquifers are not being recharged. A geodatabase was assembled to assess and estimate the quantity of runoff from these impervious surfaces and potential recharge locations were identified using a combination of Geographic Information Systems (GIS) and remote sensing. This study showed that runoff from impervious surfaces in New Providence represents a large freshwater resource that could potentially be used to recharge the lens aquifers on New Providence.
Resumo:
Between 2001 and 2005, seven category 3 or higher major hurricanes made landfall within the US. The hydrologic impacts of these distinct climatic phenomena frequently occurring in wetland watersheds, however, are not well understood. The focus of this study was to evaluate the impacts of hurricane wind and rainfall conditions on water velocity and water elevations within the study wetland, the Florida Everglades. Specifically water velocity data was measured near two tree islands (Gumbo Limbo (GL) and Satin Leaf (SL)) and wind speed, water elevation, and rainfall were obtained from nearby wind observation stations. During the direct impacts of the hurricanes (Hurricanes Katrina and Wilma), water speed, flow direction, and hydraulic gradients were altered, and the extent of variation was positively related to wind characteristics, with significant alterations in flow direction at depth during Hurricane Wilma due to higher wind speeds. After the direct impacts, the longer lasting effect of hurricanes (time scale of a few days) resulted in altered flow speeds that changed by 50% or less. These longer lasting changes in flow speeds may be due to the redistribution of emergent vegetation.
Resumo:
Surface water flow patterns in wetlands play a role in shaping substrates, biogeochemical cycling, and ecosystem characteristics. This paper focuses on the factors controlling flow across a large, shallow gradient subtropical wetland (Shark River Slough in Everglades National Park, USA), which displays vegetative patterning indicative of overland flow. Between July 2003 and December 2007, flow speeds at five sites were very low (s−1), and exhibited seasonal fluctuations that were correlated with seasonal changes in water depth but also showed distinctive deviations. Stepwise linear regression showed that upstream gate discharges, local stage gradients, and stage together explained 50 to 90% of the variance in flow speed at four of the five sites and only 10% at one site located close to a levee-canal combination. Two non-linear, semi-empirical expressions relating flow speeds to the local hydraulic gradient, water depths, and vegetative resistance accounted for 70% of the variance in our measured speed. The data suggest local-scale factors such as channel morphology, vegetation density, and groundwater exchanges must be considered along with landscape position and basin-scale geomorphology when examining the interactions between flow and community characteristics in low-gradient wetlands such as the Everglades.
Resumo:
Dissolved organic matter (DOM) in groundwater and surface water samples from the Florida coastal Everglades were studied using excitation–emission matrix fluorescence modeled through parallel factor analysis (EEM-PARAFAC). DOM in both surface and groundwater from the eastern Everglades S332 basin reflected a terrestrial-derived fingerprint through dominantly higher abundances of humic-like PARAFAC components. In contrast, surface water DOM from northeastern Florida Bay featured a microbial-derived DOM signature based on the higher abundance of microbial humic-like and protein-like components consistent with its marine source. Surprisingly, groundwater DOM from northeastern Florida Bay reflected a terrestrial-derived source except for samples from central Florida Bay well, which mirrored a combination of terrestrial and marine end-member origin. Furthermore, surface water and groundwater displayed effects of different degradation pathways such as photodegradation and biodegradation as exemplified by two PARAFAC components seemingly indicative of such degradation processes. Finally, Principal Component Analysis of the EEM-PARAFAC data was able to distinguish and classify most of the samples according to DOM origins and degradation processes experienced, except for a small overlap of S332 surface water and groundwater, implying rather active surface-to-ground water interaction in some sites particularly during the rainy season. This study highlights that EEM-PARAFAC could be used successfully to trace and differentiate DOM from diverse sources across both horizontal and vertical flow profiles, and as such could be a convenient and useful tool for the better understanding of hydrological interactions and carbon biogeochemical cycling.
Resumo:
The marked decline in tree island cover across the Everglades over the last century, has been attributed to landscape-scale hydrologic degradation. To preserve and restore Everglades tree islands, a clear understanding of tree island groundwater-surface water interactions is needed, as these interactions strongly influence the chemistry of shallow groundwater and the location and patterns of vegetation in many wetlands. The goal of this work was to define the relationship between groundwater-surface water interactions, plant-water uptake, and the groundwater geochemical condition of tree islands. Groundwater and surface water levels, temperature, and chemistry were monitored on eight constructed and one natural tree island in the Everglades from 2007–2010. Sap flow, diurnal water table fluctuations and stable oxygen isotopes of stem, ground and soil water were used to determine the effect of plant-water uptake on groundwater-surface water interactions. Hydrologic and geochemical modeling was used to further explore the effect of plant-groundwater-surface water interactions on ion concentrations and potential mineral formation.^
Resumo:
Over the last one hundred years, compartmentalization and water management activities have reduced water flow to the ridge and slough landscape of the Everglades. As a result, the once corrugated landscape has become topographically and vegetationally uniform. The focus of this study was to quantify variation in surface flow in the ridge and slough landscape and to relate flow conditions to particulate transport and deposition. Over the 2002–2003 and 2003–2004 wet seasons, surface velocities and particulate accumulation were measured in upper Shark River Slough in Everglades National Park. Landscape characteristics such as elevation, plant density and biomass also were examined to determine their impact on flow characteristics and material transport. The results of this study demonstrate that the release of water during the wet season not only increases water levels, but also increased flow speeds and particulate transport and availability. Further, flow speeds were positively and significantly correlated with water level thereby enhancing particulate transport in sloughs relative to ridges especially during peak flow periods. Our results also indicate that the distribution of biomass in the water column, including floating plants and periphyton, affects velocity magnitude and shape of vertical profiles, especially in the sloughs where Utricularia spp. and periphyton mats are more abundant. Plot clearing experiments suggest that the presence of surface periphyton and Utricularia exert greater control over flow characteristics than the identity (i.e., sawgrass or spike rush) or density of emergent macrophytes, two parameters frequently incorporated into models describing flow through vegetated canopies. Based on these results, we suggest that future modeling efforts must take the presence of floating biomass, such as Utricularia, and presence of periphyton into consideration when describing particulate transport.