993 resultados para Surface Gravity-waves
Resumo:
In this study, we developed and improved the numerical mode matching (NMM) method which has previously been shown to be a fast and robust semi-analytical solver to investigate the propagation of electromagnetic (EM) waves in an isotropic layered medium. The applicable models, such as cylindrical waveguide, optical fiber, and borehole with earth geological formation, are generally modeled as an axisymmetric structure which is an orthogonal-plano-cylindrically layered (OPCL) medium consisting of materials stratified planarly and layered concentrically in the orthogonal directions.
In this report, several important improvements have been made to extend applications of this efficient solver to the anisotropic OCPL medium. The formulas for anisotropic media with three different diagonal elements in the cylindrical coordinate system are deduced to expand its application to more general materials. The perfectly matched layer (PML) is incorporated along the radial direction as an absorbing boundary condition (ABC) to make the NMM method more accurate and efficient for wave diffusion problems in unbounded media and applicable to scattering problems with lossless media. We manipulate the weak form of Maxwell's equations and impose the correct boundary conditions at the cylindrical axis to solve the singularity problem which is ignored by all previous researchers. The spectral element method (SEM) is introduced to more efficiently compute the eigenmodes of higher accuracy with less unknowns, achieving a faster mode matching procedure between different horizontal layers. We also prove the relationship of the field between opposite mode indices for different types of excitations, which can reduce the computational time by half. The formulas for computing EM fields excited by an electric or magnetic dipole located at any position with an arbitrary orientation are deduced. And the excitation are generalized to line and surface current sources which can extend the application of NMM to the simulations of controlled source electromagnetic techniques. Numerical simulations have demonstrated the efficiency and accuracy of this method.
Finally, the improved numerical mode matching (NMM) method is introduced to efficiently compute the electromagnetic response of the induction tool from orthogonal transverse hydraulic fractures in open or cased boreholes in hydrocarbon exploration. The hydraulic fracture is modeled as a slim circular disk which is symmetric with respect to the borehole axis and filled with electrically conductive or magnetic proppant. The NMM solver is first validated by comparing the normalized secondary field with experimental measurements and a commercial software. Then we analyze quantitatively the induction response sensitivity of the fracture with different parameters, such as length, conductivity and permeability of the filled proppant, to evaluate the effectiveness of the induction logging tool for fracture detection and mapping. Casings with different thicknesses, conductivities and permeabilities are modeled together with the fractures in boreholes to investigate their effects for fracture detection. It reveals that the normalized secondary field will not be weakened at low frequencies, ensuring the induction tool is still applicable for fracture detection, though the attenuation of electromagnetic field through the casing is significant. A hybrid approach combining the NMM method and BCGS-FFT solver based integral equation has been proposed to efficiently simulate the open or cased borehole with tilted fractures which is a non-axisymmetric model.
A New Method for Modeling Free Surface Flows and Fluid-structure Interaction with Ocean Applications
Resumo:
The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.
We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.
Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.
Resumo:
Alkenone sediment data from the Nordic seas and North Atlantic are compared to those from Sikes et al. (1997) for the Southern Ocean to evaluate further UK37 and UK37' as proxies to estimate cold temperatures (<10°C) and the effect of salinity and temperature in the relative abundance of 37:4 to the total abundance of C37 alkenones (37:4%). UK37 and UK37' are found to be equally viable as proxies, but there are significant regional differences in their cold temperature dependence. The measurement of 37:4% in cores from the North Atlantic region can be used to identify situations when UK37' is not a reliable paleothermometer. Variations in salinity are probably responsible for changes in the sedimentary record of 37:4%, and a preliminary calibration has been obtained for 37:4%=f(salinity). This new relationship should be further confirmed through field or laboratory experiments, but it paves the way to derive a molecular proxy to reconstruct paleosalinity in surface waters.
Resumo:
The mineralogy and geochemistry of a suite of nine manganese nodules from the South Atlantic have been determined. The Ce/La ratios of the nodules were investigated to see if they could be used as redox indicators to trace the oxygen content of the ambient water mass and the flow path of the Antarctic Bottom Water as has previously been successfully carried out in the Pacific Ocean. The Ce/La ratios of the nodules decrease in the sequence Lazarev Sea, Weddell Sea (10.4 and 9.7)>East Georgia Basin (6.5 and 7.1)>Argentine Basin (5.0), but then increase in the Brazil Basin (6.2) and Angola Basin (9.8 and 15.1). A further decrease was observed in the Cape Basin (7.6). An extremely high Ce/La ratio of 24.4 had already been determined for nodules sampled north of the Nares Abyssal Plain in the western North Atlantic. These data reflect the more complicated pattern of bottom water flow in the South Atlantic than in the South Pacific. The penetration of more oxygenated North Atlantic Deep Water into the South Atlantic accounts for the higher Ce/La ratios in the nodules from the Angola and Brazil basins. Based on this study, the flow path of the Antarctic Bottom Water could only be traced as far north as the Argentine Basin. The unique geochemistry of nodules from the central Angola Basin (high Mn/Fe and Ce/La ratios, high contents of Ni, Cu, Zn and Mo) appears to be a function of the nature of the overlying water mass and of the multiple diagenetic sources of metals to the nodules.
Resumo:
Sediment descriptions and lithostratigraphy (chapter 6.4) NANSEN BASIN The upperrnost 20-50 cm of sedirnents in the Nansen Basin norrnally cornprise soft dark brown, brown-grayish and brown clay. Except for the toprnost clay, the four piston cores retrieved, contained quite different lithologies: a rnuddy diarnicton with outsized clasts (PS2157-6), sandy-silt beds alternating with clay beds (PS2159-6), and silty clay beds of brownish and grayish colours (PS2161-3). Core PS2208-3 was retrieved frorn a plateau on a searnount. The plateau was serni-encircled by hills. The upper 250 cm of this core cornprise brown and olive brown clays. Below these are several sandlayers and a 74 cm thick unit of a sandy mud with rnud-clasts up to 20 cm in diameter. GAKKEL RIDGE The uppermost 20-50 cm of sediments on the Gakkel Ridge comprise soft dark brown, brown, grayish brown clay. In most of the cores there are two horizons of brown clay separated by olive brown clay. The upper horizon is darker. The older stratigraphy is rather varied. Core PS2165-1 contains several thin gray sandlsilt layers, probably distal turbidites. The sarne is found in Core PS2167-1. This core also has a thick (approx. 2 rn) coarse grained turbidite containing large rnud clasts and basaltic rock fragrnents. The color of the turbiditic layers is dark gray. There are several horizons of hernipelagic sandylsilty clays with quite a variety in colours; black, gray, olive, brown, yellowish brown and reddish. The colour variation rnay be due to hydrotherrnal activity or provenance or a shift in redox potential. Cores PS2168-2 and PS2169-1 have typical sequences of very dark gray sandy mud with sharp lower boundaries grading upwards into olive brown clay. Below the lower boundary is often a thin (1-2 cm) gray clay layer. AMUNDSEN BASIN The giant box cores (GKG) provided in most cases excellently preserved sedirnent surfaces which consisted in the entire Amundsen Basin of dark brown to dark grayish brown silty clay with few dropstones and common calcareous microfossils (foraminifers and calcareous nannofossils). The brown and grayish brown color of the sediment surface is a result of the oxidizing conditions at the seafloor due to the rapid renewal of the bottom water rnasses. Planktic forarninifers and calcareous nannofossils are relatively frequent and well preserved despite the rernote location of the basin and its water depths of >4000 rn. Srnear slide descriptions have shown that the surface sedirnents consist dorninantly of clays to silty rnuds with clay rninerals and quartz as the rnost important constituents. The coarse fractions contained besides planktic and benthic forarninifers and coarse clastic rnaterials, rare bivalves, dropstones and mud clasts. The Station PS2190 at the North Pole is a particular good exarnple of the type of sedirnents deposited at the sea floor surface of the Arnundsen Basin, with hornogenous dark brown soft clay covering a sedirnent sequence of highly variable cornposition. Nurnerous giant box cores also provide insight into the detailed lithostratigraphy of the upperrnost sedirnent layers. Twelve box cores have been collected frorn the Arnundsen Basin. Below the youngest unit of 5-20 crn thick silty clays deposits of variable stratigraphies have been found, rnostly consisting of clays or silty clays. In a few instances turbidites have been observed. Benthic forarninifers have not been found in the surface sedirnents. Other fossils were extrernely rare. Bioturbation is weakly developed on all stations. Benthic anirnals seern to live only in and on the upperrnost 2 cm of the uppermost sediment layer. They cornprise amphipods (on all stations) and holothurians, bryozoans, polychaetes, and porifers at one station each. LOMONOSOV RIDGE Sediments from the Lomonosov Ridge show a variety of colors and textures. Following smear slide analyses they are composed mostly of clay minerals and quartz with mica and feldspars, especially in the siltier and sandier parts. Volcanic glass, microcrystalline carbonate, opaque minerals and green amphibole are occasional accessories. The sediments from the Lomonosov Ridge show a noticeable difference from sediments collected from the surrounding basins. Lomonosov Ridge sediments are richer in silt and sand than basin sediments. Occasional turbidites occur in ridge sediments but these must be of entirely local origin. The ridge sediments include frequent layers of "cottage cheese" texture made up of what appear to be small, angular mud clasts of a variety of colors.
Resumo:
Planktonic foraminiferal census counts are used to construct high-resolution sea surface temperature (SST) and subsurface (thermocline) temperature records at a core site in the Tobago Basin, Lesser Antilles. The record is used to document climatic variability at this tropical site in comparison to middle- and high-latitude sites and to test current concepts of cross-equatorial heat transports as a major player in interhemispheric climate variability. Temperatures are estimated using transfer function and modern analog techniques. Glacial - maximum cooling of 2.5°-3°C is indicated; maximum cooling by 4°C is inferred for isotope stage 3. The SST record displays millennial-scale variability with temperature jumps of up to 3°C and closely tracks the structure of ice-core Dansgaard/Oeschger cycles. SST variations in part of the record run opposite to the SST evolution at high northern latitude sites, pointing to thermohaline circulation and marine heat transport as an important factor driving SST in the tropical and high-latitude Atlantic, both on orbital and suborbital timescales.
Resumo:
The Atlantic is regarded as a huge carbonate depocenter due to an on average deep calcite lysocline. However, calculations and models that attribute the calcite lysocline to the critical undersaturation depth (hydrographic or chemical lysocline) and not to the depth at which significant calcium carbonate dissolution is observed (sedimentary calcite lysocline) strongly overestimate the preservation potential of calcareous deep-sea sediments. Significant calcium carbonate dissolution is expected to begin firstly below 5000 m in the deep Guinea and Angola Basin and below 4400 m in the Cape Basin. Our study that is based on different calcium carbonate dissolution stages of the planktic foraminifera Globigerina bulloides clearly shows that it starts between 400 and 1600 m shallower depending on the different hydrographic settings of the South Atlantic Ocean. In particular, coastal areas are severely affected by increased supply of organic matter and the resultant production of metabolic CO2 which seems to create microenvironments favorable for dissolution of calcite well above the hydrographic lysocline.
Resumo:
The terrigenous fraction of seabed sediments recovered along the north-west African continental margin illustrates spatial variability in grain size attributed to different transport mechanisms. Three subpopulations are determined from the grain-size analyses (n = 78) of the carbonate-free silt fraction applying an end-member modelling algorithm (G. J. Weltje, 1997). The two coarsest end-members are interpreted as representing aeolian dust, and the fine-grained end-member is related to fluvial supply. The end-member model thus allows aeolian fallout to be distinguished from fluvial-sourced mud in this area. The relative contributions of the end-members show distinct regional variations that can be related to different transport processes and pathways. Understanding present-day sediment dispersal and mixing is important for a better understanding of older sedimentary records and palaeoclimate reconstructions in the region.
Resumo:
Recent coccoliths from 52 surface sediment samples recovered from the south-eastern South Atlantic were examined qualitatively and quantitatively in order to assess the controlling mechanisms for their distribution patterns, such as ecological and preservational factors, and their role as carbonate producers. Total coccolith abundances range from 0.2 to 39.9 coccoliths*10**9/ g sediment. Four assemblages can be delineated by their coccolith content characterising the northern Benguela, the middle to southern Benguela, the Walvis Ridge and the deeper water. Distinctions are based on multivariate ordination techniques applied on the relative abundances of the most abundant taxa, Emiliania huxleyi, Calcidiscus leptoporus, Gephyrocapsa spp., Coccolithus pelagicus and subtropical to tropical species. The coccolith distribution seems to be temperature and nutrient controlled co-varying with the seaward extension of the upwelling filament zone in the Benguela. A preservation index (CEX') based on the differential dissolution behaviour of the delicate E. huxleyi and Gephyrocapsa ericsonii versus the robust C. leptoporus is applied in order to detect the position of the coccolith lysocline. Although some samples were recognised as dissolution-affected, the distribution of the coccoliths in the surface-sediments reflects the different oceanographic surface-water conditions. Mass estimations of the coccolith carbonate reveal coccoliths to be only minor contributors to the carbonate preserved in the surface sediments. The mean computed coccolith carbonate content is 17 wt.%, equivalent to a mean contribution of 23% to the bulk carbonate.
Resumo:
A simplified classification of the Holocene sediments based on textures and grain type results in fourteen major units, twelve of which are essentially carbonate in composition. A brief description and photographic illustration of these units, together with the sedimentary and diagenetic processes which have contributed to their formation, is designed to give the reader a broad but valid impression of Persian Gulf sediments. The distribution of the fourteen sediment units throughout the Arabian parts of the basin, although complicated by numerous local bathymetric highs and depressions, is relatively simple. Because the Arabian sea floor slopes progressively from a windward shoreline to the basin center there is increasing protection from wave action towards the center of the basin. As a result sediments grade from skeletal, oolitic and pelletoidal sands (and muds in coastal lagoons) and fringing reefs, through an irregular zone of compound grain sands,into widespread skeletal muddy sands, and finally into basin center muds. These simple relationships vary laterally around the Arabian side of the gulf. Lateral variation is dependant upon orientation of the regional slope with respect to the prevailing NW wind-driven waves, angle of slope, and presence or absence of regional, structurally based barriers.
Resumo:
Diatoms from 228 Southern Ocean core-top sediment samples were examined to determine the geographic distributions of 32 major diatom species/taxa preserved in the sediments of three zonally-distinct regions; Sea Ice, Open Ocean and the Tropical/Subtropical. In the first of three papers, 14 species/taxa occurring in the region where sea ice covers the ocean surface on an annual basis are geographically documented. Comparisons are drawn between the diatom abundances on the sea floor, sea ice parameters (annual duration and concentration in February and September) and February sea-surface temperature. Such parameters are commonly used in reconstructing past oceanographic conditions in the Sea Ice and Open Ocean zones. Analysis of the geographic patterns and sea-surface parameter correlations reveals species-specific distributions regulated primarily by sea ice coverage and sea-surface temperature, which support the use of diatom remains for the estimation of these past sea-surface environmental parameters. Comparison with reliable accounts of the 14 species from the sediments or plankton also provides the first glimpses into species-specific ecology and habitat linkages.
Resumo:
We present high-resolution paleoceanographic records of surface and deep water conditions within the northern Red Sea covering the last glacial maximum and termination I using alkenone paleothermometry, stable oxygen isotopes, and sediment compositional data. Paleoceanographic records in the restricted desert-surrounded northern Red Sea are strongly affected by the stepwise sea level rise and appear to record and amplify well-known millennial-scale climate events from the North Atlantic realm. During the last glacial maximum (LGM), sea surface temperatures were about 4°C cooler than the late Holocene. Pronounced coolings associated with Heinrich event 1 (~2°C below the LGM level) and the Younger Dryas imply strong atmospheric teleconnections to the North Atlantic. Owing to the restricted exchange with the Indian Ocean, Red Sea salinity is particularly sensitive to changes in global sea level. Paleosalinities exceeded 50 psu during the LGM. A pronounced freshening of the surface waters is associated with the meltwater peaks MWP1a and MWP1b owing to an increased surface-near inflow of "normal" saline water from the Indian Ocean. Vertical delta18O gradients are also increased during these phases, indicating stronger surface water stratification. The combined effect of deglacial changes in sea surface temperature and salinity on water column stratification initiated the formation of two sapropel layers, which were deposited under almost anoxic condition in a stagnant water body.