996 resultados para Supercritical Fluid Extraction (SFE)
Resumo:
Procedures for routine analysis of soil phosphorus (P) have been used for assessment of P status, distribution and P losses from cultivated mineral soils. No similar studies have been carried out on wetland peat soils. The objective was to compare extraction efficiency of ammonium lactate (PAL), sodium bicarbonate (P-Olsen), and double calcium lactate (P-DCaL) and P distribution in the soil profile of wetland peat soils. For this purpose, 34 samples of the 0-30, 30-60 and 60-90 cm layers were collected from peat soils in Germany, Israel, Poland, Slovenia, Sweden and the United Kingdom and analysed for P. Mean soil pH (CaCl2, 0.01 M) was 5.84, 5.51 and 5.47 in the 0-30, 30-60 and 60-90 cm layers, respectively. The P-DCaL was consistently about half the magnitude of either P-AL or P-Olsen. The efficiency of P extraction increased in the order P-DCaL < P-AL &LE; P-Olsen, with corresponding means (mg kg(-1)) for all soils (34 samples) of 15.32, 33.49 and 34.27 in 0-30 cm; 8.87, 17.30 and 21.46 in 30-60 cm; and 5.69, 14.00 and 21.40 in 60-90 cm. The means decreased with depth. When examining soils for each country separately, P-Olsen was relatively evenly distributed in the German, UK and Slovenian soils. P-Olsen was linearly correlated (r = 0.594, P = 0.0002) with pH, whereas the three P tests (except P-Olsen vs P-DCaL) significantly correlated with each other (P = 0.017850.0001). The strongest correlation (r = 0.617, P = 0.0001) was recorded for P-AL vs P-DCaL) and the two methods were inter-convertible using a regression equation: P-AL = -22.593 + 5.353 pH + 1.423 P-DCaL, R-2 = 0.550.
Resumo:
We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a two-dimensional reservoir in an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting or extracting fluid. Numerical solution of this problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l. This is a situation which occurs frequently in the application to oil reservoir recovery. Under the assumption that epsilon=h/l<<1, we show that the pressure field varies only in the horizontal direction away from the wells (the outer region). We construct two-term asymptotic expansions in epsilon in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive analytical expressions for all significant process quantities. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the reservoir, epsilon, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighborhood of wells and away from wells.
Extraction of tidal channel networks from aerial photographs alone and combined with laser altimetry
Resumo:
Tidal channel networks play an important role in the intertidal zone, exerting substantial control over the hydrodynamics and sediment transport of the region and hence over the evolution of the salt marshes and tidal flats. The study of the morphodynamics of tidal channels is currently an active area of research, and a number of theories have been proposed which require for their validation measurement of channels over extensive areas. Remotely sensed data provide a suitable means for such channel mapping. The paper describes a technique that may be adapted to extract tidal channels from either aerial photographs or LiDAR data separately, or from both types of data used together in a fusion approach. Application of the technique to channel extraction from LiDAR data has been described previously. However, aerial photographs of intertidal zones are much more commonly available than LiDAR data, and most LiDAR flights now involve acquisition of multispectral images to complement the LiDAR data. In view of this, the paper investigates the use of multispectral data for semiautomatic identification of tidal channels, firstly from only aerial photographs or linescanner data, and secondly from fused linescanner and LiDAR data sets. A multi-level, knowledge-based approach is employed. The algorithm based on aerial photography can achieve a useful channel extraction, though may fail to detect some of the smaller channels, partly because the spectral response of parts of the non-channel areas may be similar to that of the channels. The algorithm for channel extraction from fused LiDAR and spectral data gives an increased accuracy, though only slightly higher than that obtained using LiDAR data alone. The results illustrate the difficulty of developing a fully automated method, and justify the semi-automatic approach adopted.
Resumo:
The study of the morphodynamics of tidal channel networks is important because of their role in tidal propagation and the evolution of salt-marshes and tidal flats. Channel dimensions range from tens of metres wide and metres deep near the low water mark to only 20-30cm wide and 20cm deep for the smallest channels on the marshes. The conventional method of measuring the networks is cumbersome, involving manual digitising of aerial photographs. This paper describes a semi-automatic knowledge-based network extraction method that is being implemented to work using airborne scanning laser altimetry (and later aerial photography). The channels exhibit a width variation of several orders of magnitude, making an approach based on multi-scale line detection difficult. The processing therefore uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels using a distance-with-destination transform. Breaks in the networks are repaired by extending channel ends in the direction of their ends to join with nearby channels, using domain knowledge that flow paths should proceed downhill and that any network fragment should be joined to a nearby fragment so as to connect eventually to the open sea.
Resumo:
A pilot study found that DDT breakdown at the GC inlet was extensive in extracts from some-but not all-samples with high organic carbon contents. However, DDT losses could be prevented with a one-step extraction-cleanup in the Soxflo instrument with dichloromethane and charcoal. This dry-column procedure took 1 h at room temperature. It was tested on spiked soil and peat samples and validated with certified soil and sediment reference materials. Spike recoveries from freshly spiked samples ranged from 79 to 111% at 20-4000 mug/kg concentrations. Recoveries from the real-world CRMs were 99.7-100.2% of DDT, 89.7-90.4% of DDD and 89.6-107.9% of DDE. It was concluded that charcoal cleanups should be used routinely during surveys for environmental DDX pollution in order to mitigate against unpredictable matrix-enhanced breakdown in the GC. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Root-knot nematode [RKN] (Meloidogyne incognita) can increase the severity of Verticillium (V dahliae) and Fusarium (F oxysporum f.sp. vasinfectum) wilt diseases in cotton (Gossypium hirsutum). This study was conducted to determine some of the physiological responses caused by nematode invasion that might decrease resistance to vascular wilt diseases. The effect of RKN was investigated on spore germination and protein, carbohydrate and peroxidase content in the xylem fluids extracted from nematode-infected plants. Two cotton cultivars were used with different levels of resistance to both of the wilt pathogens. Spore germination was greater in the xylem fluids from nematode-infected plants than from nematode-free plants. The effect on spore germination was greater in the Fusarium-resistant cultivar (51%). Analysis of these fluids showed a decrease in total protein and carbohydrate levels for both wilt-resistant cultivars, and an increase in peroxidase concentration. Fluids from nematode-free plants of the Verticillium-resistant cultivar contained 46% more peroxidase than the Fusarium-resistant cultivar. The results provide further evidence that the effect of RKN on vascular wilt resistance is systemic and not only local. Changes in metabolites in the xylem pass from the root to the stem, accelerating disease development.