976 resultados para Sulphur
Resumo:
In this paper we describe textural relationships in hydrated upper mantle peridotites emplaced at a nonconstructive ridge segment. Development of serpentinites and partially serpentinized peridotites takes place in four main stages: (1) pervasive serpentinization forming mainly lizardite, (2) a tensional stage forming chrysotile + talc + chlorite, (3) a deformational stage forming antigorite + tremolite, and (4) a late local tensional stage forming another generation of chrysotile veinlets. Mineral chemistry of serpentine pseudomorphs reflects in part primary mineral compositions. Olivine pseudomorphs are typically nickeliferous and depleted in aluminum and chromium. Orthopyroxene pseudomorphs have lower nickel contents and relatively high iron, aluminum, and chromium contents. Clinopyroxene pseudomorphs have very low nickel contents and relatively high aluminum and chromium contents. These chemical patterns in the serpentinites can be used to help discriminate between harzburgitic and lherzolitic protoliths. Oxygen isotopes and mineral parageneses suggest serpentine is derived from circulation of hydrothermal (200?C) fluids through the peridotite body. Crystallization of tremolite, talc, and chlorite may have occurred at temperatures up to 525?C if C02/H20 ratios were less than 0.25. Open fissures developing in aging upper mantle provide paths for important seawater circulation through a thin basaltic carapace down to shallow mantle rocks.
Resumo:
Results of mineralogical and geochemical investigations of post-Middle Jurassic deposits of the Atlantic Ocean are based on materials of the Deep Sea Drilling Project. Comparative characteristics of primary matter for ''black shales'' are given. Exhalative origin of heavy metal accumulation in near-axial sedimentary deeps of the Mid-Atlantic Ridge (23°N) are shown. History of post-Middle Jurassic sedimentation is considered on the base of clay mineral-, clastic component-, trace and rare- chemical element studies.
Resumo:
A large fragment of a paleovolcano of Silurian to Early Devonian age was discovered in the Voikar volcanic belt suggesting an ensimatic island are as its geodynamic environment. Formationally, the rocks under study are comparable to Pleistocene island arc volcanites and their paleo-analogues. The volcanites of the Toupugol complex underwent strong hydrothermal-metasomatic alteration: propylites, acid metasomatic rocks and quartz-carbonate veins, which must have resulted from hydrothermal-metasomatic alteration of andesitoids. Both volcanites and apovolcanic hydrothermal rocks in Toupugol were found to host noble metal mineralisation. It is found in close association with sulphides, particularly pyrite. Free gold was discovered in all investigated volcanites and hydrothermal rocks and is characterised by low mercury content and an unusual set of microimpurities (Pt, Pd, Cu, Fe, S) suggesting its links to the mantle substrate.
Resumo:
The first series of Soviet standard reference samples of composition of ore materials and ocean pelagic sediments has been created. It includes iron-manganese nodules (SDO-4, SDO-5 and SDO-6), ore crusts (SDO-7) diatomaceous ooze (SDO-8), and deep-sea red clays (SDO-9). The standards are intended to serve as a metrologic basis for physical, physicochemical and chemical analyses of iron-manganese minerals and ocean sediments. The standards are provided with certified analyses of rock-forming components and certain trace elements. Certified characteristics are based on statistical analysis of data obtained from an inter-laboratory experiment involving analysis of the standard reference samples by a variety of methods.
Resumo:
The backarc glasses recovered during Ocean Drilling Program Leg 135 are unique among submarine tholeiitic glasses with respect to their oxygen fugacity and sulfur concentrations. Unlike mid-ocean-ridge basalt glasses, fO2 in these samples (inferred from ratios Fe3+/Fe2+) is high and variable, and S variations (90-1140 ppm) are not coupled with FeO concentration. Strong correlations occur between the alkali and alkaline-earth elements and both fO2 (positive correlations) and S concentrations (negative correlations). Correlations between fO2 and various trace elements are strongest for those elements with a known affinity for hydrous fluids (perhaps produced during slab dehydration), suggesting the presence of a hydrous fluid with high fO2 and high alkali and alkaline earth element concentrations in the Lau Basin mantle. Concentrations of S and fO2 are strongly correlated; high fO2 samples are characterized by low S in addition to high alkali and alkaline earth element concentrations. The negative correlations between S and these trace elements are not consistent with incompatible behavior of S during crystallization. Mass balance considerations indicate that the S concentrations cannot result simply from mixing between low-S and high-S sources. Furthermore, there is no relationship between S and other trace elements or isotope ratios that might indicate that the S variations reflect mixing processes. The S variations more likely reflect the fact that when silicate coexists with an S-rich vapor phase the solubility of S in the silicate melt is a function of fO2 and is at a minimum at the fO2 conditions recorded by these glasses. The absence of Fe-sulfides and the high and variable vesicle contents are consistent with the idea that S concentrations reflect silicate-vapor equilibria rather than silicate-sulfide equilibria (as in MORB). The low S contents of some samples, therefore, reflect the high fO2 of the supra-subduction zone environment rather than a low-S source component.
Resumo:
Results of petrographic studies of ultrabasite and gabbro from the rift zones of the Indian Ocean ridges are discussed using materials of R/V Vityaz Cruise 36. Rocks sampled from two sites 2700 km apart are close to each other in their composition. Petrographically ultrabasic rocks are divided into four subgroups: I - dunite; II - harzburgite, serpentinite; III - plagioclase lherzolite; and IV - metamorphically altered rocks. Petrographic description and chemical composition of basic rock varieties are presented as well as description of rock-forming minerals and their optical properties. Formation of pyroxene and plagioclase is shown to be related to autometasomatosis, which concludes the magmatic phase proper in rock mass formation accompanied by activity of residual intragranular liquid. Formation of ultrabasite in the rift zones is related to complicated processes.
Resumo:
Several thin (1-10 cm) megascopic vitric tephras occur in the late Cenozoic calcareous oozes on Lord Howe Rise in the Tasman Sea and off eastern South Island, New Zealand. Of the 18 tephras analyzed 15 are silicic (75-78% SiO2) with abundant clear glass shards and a biotite ± hypersthene ± green hornblende ferromagnesian mineralogy. The Neogene silicic tephras were derived from the now-extinct Coromandel volcanic area in New Zealand, and the Quaternary ones from the presently active Central Volcanic Region of New Zealand. On the basis of glass chemistry and age, several of the Quaternary tephras are probably correlatives, and at least two can be matched to the major on-land Mt. Curl tephra (-0.25 m.y.). The occurrence of correlative silicic tephras both northwest and southeast of New Zealand may result from particularly violent eruptions, the ash below and above an altitude of -20 km being dispersed in opposite directions toward the Pacific Ocean and Tasman Sea, respectively. Ash drifting eastward into the southeasterly trade wind belt off northeastern New Zealand could also be carried into the central and northern Tasman Sea. Three megascopic tephras consist of altered basic shards and common labradorite crystals. They record Neogene explosive basaltic to andesitic activity from nearby ocean island or ridge sources in the Ontong-Java Plateau and Vanuatu regions. The megascopic tephras are a very incomplete and biased record of late Cenozoic explosive volcanism in the southwest Pacific because the innumerable, thin, green argillaceous layers in the cores (Gardner et al., this volume) probably represent devitrified intermediate to basic tephras derived mainly from oceanic arc volcanism along the Pacific/Australia plate boundary. In contrast to the New Zealand-derived silicic glass shards, the preservation potential of these more basic shards in Leg 90 calcareous sediments was low.
Resumo:
Early Pliocene to Pleistocene volcaniclastic sediments recovered during Ocean Drilling Program Leg 135 from Sites 834 to 839 in the Lau Basin show a wide range of chemical and mineralogical compositions extending the spectrum previously known from the Lau Basin, Lau Ridge and Tofua Arc. The following major types of volcaniclastics have been distinguished: (1) primary fallout ashes originating from eruptions on land, (2) epiclastic deposits that resulted from subaerial and submarine eruptions, (3) subaqueous fallout and pyroclastic flow deposits resulting from explosive submarine eruptions, and (4) hyaloclastites resulting from mechanical fragmentation and spalling of chilled margins of submarine pillow tubes and sheet-lava flows. Vitric shards are mostly basaltic andesitic to rhyolitic and broadly follow two major trends in terms of K2O enrichment: a low-K series (LKS) with about 1 wt% K2O at 70 wt% SiO2, and a very low-K series (VLKS) with only about 0.5 wt% K2O at 70 wt% SiO2. Sites 834 and 835 on "old" backarc basin crust, >4.2 and 3.4 m.y. old, comprise LKS rhyolites >3.3 m.y. old. Calc-alkaline basaltic turbidites originating from the Lau Ridge flowed in at 3.3 Ma. In the period from 3.3 to 2.4 Ma basaltic andesitic to rhyolitic, fine-grained LKS and VLKS volcaniclastics were deposited by turbidity currents and subaerial fallout. Three thin, discrete fallout layers (2.4-3.2 m.y. old) with high-K calc-alkaline compositions probably erupted in New Zealand. Volcaniclastics from Site 836, all <0.6 m.y. old, make up 24% of the sediments and comprise local basaltic andesitic to andesitic hyaloclastites with low Ba/Zr ratios of 0.9 to 1.4 and polymict andesitic sediments with Ba/Zr ratios of up to 5.5, containing clasts altered to lower greenschist facies. In Sites 837-839, drilled on young crust (1.8-2.1 m.y. old), volcaniclastics make up 45%-64% of the total sediment. Glass compositions are often bimodal with a mafic and a rhyolitic population. Large-volume rhyolitic, silt- to lapilli-sized volcaniclastics are interpreted as pyroclastic flows from explosive eruptions on a seamount 25-50 km away from the sites. Ba/Zr ratios are 2 to 4, partially overlapping with some Lau Basin basement lavas that show an "arc" signature, and they can reach values >5 in thin volcaniclastic layers <0.6 m.y. old.
Resumo:
Group composition of organic matter in recent ocean sediments with high Corg content has been studied in detail. It has been shown that organic matter in sediments with Corg content greater than 4% is present in the very earliest stages of transformation. Group composition of amino acids is practically similar to that of their main producer, namely phytoplankton. Organic matter of sediments with Corg content below 4% is, from this standpoint, more transformed and is close to organic matter in usual type sediments with similar Corg content.
Resumo:
This study was aimed at reconstructing a sequence of events in the magmatic and metamorphic evolution of peridotites, gabbroids, and trondhjemites from internal oceanic complexes of the Ashadze and Logachev hydrothermal vent fields. Collections of plutonic rocks from Cruises 22 and 26 of R/V "Professor Logachev", Cruise 41 of R/V "Akademik Mstislav Keldysh", and from the Serpentine Russian-French expedition aboard R/V "Pourquoi pas?" were objects of this study. Data reported here suggest that the internal oceanic complexes of the Ashadze and Logachev fields formed via the same scenario in these two regions of the Mid-Atlantic Ridge. On the other hand, an analysis of petrological and geochemical characteristics of the rocks indicated that the internal oceanic complexes of the MAR axial zone between 12°58'N and 14°45'N show pronounced petrological and geochemical heterogeneity manifested in variations in degree of depletion of mantle residues and in Nd isotopic compositions of rocks from the gabbro-peridotite association. Trondhjemites from the Ashadze hydrothermal field can be considered as partial melting products of gabbroids under influence of hydrothermal fluids. It was supposed that presence of trondhjemites in internal oceanic complexes of MAR can be used as a marker for the highest temperature deep-rooted hydrothermal systems. Perhaps, the region of the MAR axial zone, in which petrologically and geochemically contrasting internal oceanic complexes are spatially superimposed, serves as an area for development of large hydrothermal clusters with considerable ore-forming potential.