990 resultados para Substrate type
Resumo:
Human T-cell lymphotropic virus type 1 (HTLV-1) is endemic in many parts of the world and is primarily transmitted through sexual intercourse or from mother to child. Sexual transmission occurs more efficiently from men to women than women to men and might be enhanced by sexually transmitted diseases that cause ulcers and result in mucosal ruptures, such as syphilis, herpes simplex type 2 (HSV-2), and chancroid. Other sexually transmitted diseases might result in the recruitment of inflammatory cells and could increase the risk of HTLV-1 acquisition and transmission. Additionally, factors that are associated with higher transmission risks include the presence of antibodies against the viral oncoprotein Tax (anti-Tax), a higher proviral load in peripheral blood lymphocytes, and increased cervicovaginal or seminal secretions. Seminal fluid has been reported to increase HTLV replication and transmission, whereas male circumcision and neutralizing antibodies might have a protective effect. Recently, free virions were discovered in plasma, which reveals a possible new mode of HTLV replication. It is unclear how this discovery might affect the routes of HTLV transmission, particularly sexual transmission, because HTLV transmission rates are significantly higher from men to women than women to men.
Resumo:
Urinary symptoms occur in 19% of human T-cell lymphotropic virus type 1 (HTLV-1)-infected patients who do not fulfill criteria for HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and in almost 100% of HAM/TSP patients. Few studies have evaluated therapies for overactive bladder (OAB) caused by HTLV-1 infection. This case report describes the effect of onabotulinum toxin A on the urinary manifestations of three patients with HAM/TSP and OAB symptoms. The patients were intravesically administered 200 units of Botox®. Their incontinence episodes improved, and their OAB symptoms scores (OABSS) reduced significantly. These data indicate that Botox® should be a treatment option for OAB associated with HTLV-1 infection.
Resumo:
Exacerbation of the immune response against Mycobacterium leprae can lead to neuritis, which is commonly treated via immunosuppression with corticosteroids. Early neurolysis may be performed concurrently, especially in young patients with a risk of functional sequelae. We report the case of a young patient experienced intense pain in the left elbow one year after the treatment of tuberculoid-tuberculoid leprosy. The pain was associated with paresthesias in the ulnar edge and left ulnar claw. After evaluation, the diagnosis was changed to borderline tuberculoid leprosy accompanied with neuritis of the left ulnar nerve. Early neurolysis resulted in rapid reduction of the pain and recovery of motor function.
Resumo:
Different oil-containing substrates, namely, used cooking oil (UCO), fatty acids-byproduct from biodiesel production (FAB) and olive oil deodorizer distillate (OODD) were tested as inexpensive carbon sources for the production of polyhydroxyalkanoates (PHA) using twelve bacterial strains, in batch experiments. The OODD and FAB were exploited for the first time as alternative substrates for PHA production. Among the tested bacterial strains, Cupriavidus necator and Pseudomonas resinovorans exhibited the most promising results, producing poly-3-hydroxybutyrate, P(3HB), form UCO and OODD and mcl-PHA mainly composed of 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD) monomers from OODD, respectively. Afterwards, these bacterial strains were cultivated in bioreactor. C. necator were cultivated in bioreactor using UCO as carbon source. Different feeding strategies were tested for the bioreactor cultivation of C. necator, namely, batch, exponential feeding and DO-stat mode. The highest overall PHA productivity (12.6±0.78 g L-1 day-1) was obtained using DO-stat mode. Apparently, the different feeding regimes had no impact on polymer thermal properties. However, differences in polymer‟s molecular mass distribution were observed. C. necator was also tested in batch and fed-batch modes using a different type of oil-containing substrate, extracted from spent coffee grounds (SCG) by super critical carbon dioxide (sc-CO2). Under fed-batch mode (DO-stat), the overall PHA productivity were 4.7 g L-1 day-1 with a storage yield of 0.77 g g-1. Results showed that SCG can be a bioresource for production of PHA with interesting properties. Furthermore, P. resinovorans was cultivated using OODD as substrate in bioreactor under fed-batch mode (pulse feeding regime). The polymer was highly amorphous, as shown by its low crystallinity of 6±0.2%, with low melting and glass transition temperatures of 36±1.2 and -16±0.8 ºC, respectively. Due to its sticky behavior at room temperature, adhesiveness and mechanical properties were also studied. Its shear bond strength for wood (67±9.4 kPa) and glass (65±7.3 kPa) suggests it may be used for the development of biobased glues. Bioreactor operation and monitoring with oil-containing substrates is very challenging, since this substrate is water immiscible. Thus, near-infrared spectroscopy (NIR) was implemented for online monitoring of the C. necator cultivation with UCO, using a transflectance probe. Partial least squares (PLS) regression was applied to relate NIR spectra with biomass, UCO and PHA concentrations in the broth. The NIR predictions were compared with values obtained by offline reference methods. Prediction errors to these parameters were 1.18 g L-1, 2.37 g L-1 and 1.58 g L-1 for biomass, UCO and PHA, respectively, which indicates the suitability of the NIR spectroscopy method for online monitoring and as a method to assist bioreactor control. UCO and OODD are low cost substrates with potential to be used in PHA batch and fed-batch production. The use of NIR in this bioprocess also opened an opportunity for optimization and control of PHA production process.
Resumo:
The quasi two-dimensional electron gas (q2DEG) hosted in the interface of an epitaxially grown lanthanum aluminate (LaAlO3) thin film with a TiO2-termi-nated strontium titanate (SrTiO3) substrate (001) has been massively studied in the last few years. The confinement of mobile electrons to within a few nanome-ters from the interface, superconductive behavior at low temperatures and elec-tron mobility exceeding 1000 cm2/(V.s) make this system an interesting candi-date to explore the physics of spin injection and transport. However, due to the critical thickness for conduction of 4 unit cells (uc) of LaAlO3, a high tunneling resistance hampers electrical access to the q2DEG, preventing proper injection of spin polarized current. Recently, our group found that depositing a thin overlayer of Co on LaAlO3 reduces the critical thickness, enabling conduction with only 1 uc of LaAlO3. Two scenarios arise to explain this phenomenon: a pinning of the Fermi level in the metal, inducing charge transfer in the SrTiO3; the creation of oxygen vacancies at the interface between LaAlO3 and the metal, leading to an n-type doping of the SrTiO3. In this dissertation, we will report on magnetotransport of metal/LaAlO3/SrTiO3 (metal: Ti, Ta, Co, Py, Au, Pt, Pd) heterostructures with 2 uc of LaAlO3 studied at low temperatures (2 K) and high magnetic fields (9 T). We have analyzed the transport properties of the gas, namely, the carrier concen-tration, mobility and magnetotransport regime and we will discuss the results in the light of the two scenarios mentioned above.
Resumo:
The restoration materials currently used to fill gaps in architectural historical azulejos (e.g. lime or organic resin pastes) usually show serious drawbacks in terms of compatibility, effectiveness and durability. The existing solutions do not fully protect azulejos in outdoor conditions and frequently result in further deterioration. Geopolymers can be a potential solution for azulejo lacunae infill given the chemical-mineralogical similitude to the ceramic body, and also the durability and versatile range of physical properties that can be obtained through the manipulation of their formulation and curing conditions. This work presents and discusses the viability of the use of geopolymeric pastes to fill lacunae in azulejos or to act as “cold” cast ceramic tile surrogates reproducing missing azulejo fragments. The formulation of geopolymers, namely the type of activators, the aluminosilicate source, the amount of water (to meet adequate workability requirements) and curing conditions were studied. The need for post-curing desalination was also considered envisaging their application in the restoration of outdoor architectural historical azulejos frequently exposed to adverse environmental conditions. The possible advantages and disadvantages of the use of geopolymers in the conservation of azulejos are also discussed. Several techniques were used to study the chemical and physical behavior of geopolymers, namely FT-IR, XRD, MIP, SEM-EDS, WDXRF, electrical conductivity, open porosity, bending strength, adhesion strength, water vapour permeability, thermal expansion and hydric expansion. The results indicate that geopolymers are a promising material for restoration of azulejos, exhibiting some properties, such as adhesion to the ceramic substrate, higher than inorganic materials used nowadays, such as aerial lime based pastes.
Resumo:
Haemophilus influenzae is one of the most important bacterial agents of otitis and sinusitis. H. influenzae type b (Hib) is one of the main causes of meningitis, pneumonia, and septicemia in nonvaccinated children under 6 years of age. The aims of this study were to determine the prevalence of H. influenzae and Hib oropharyngeal colonization prior to the onset of the Hib vaccination program in Brazil in previously healthy children and to assess the susceptibility profile of this microorganism to a selected group of antimicrobials that are used to treat acute respiratory infections. METHOD: Cultures of Haemophilus influenzae were made from oropharynx swabs from 987 children under 6 years of age who were enrolled in 29 day-care centers in Taubaté (a city of São Paulo state, Brazil) between July and December 1998. RESULTS: The prevalence of H. influenzae carriers was 17.4%, and only 5.5% of the strains were beta-lactamase producers. The prevalence of Hib carriers was high, 7.3% on average (range, 0.0 - 33.3%). CONCLUSIONS: The low prevalence of colonization by penicillin-resistant strains indicates that it is not necessary to substitute ampicilin or amoxicilin to effectively treat otitis and sinusitis caused by H. influenzae in Taubaté.
Resumo:
Microbial electrolysis cells (MECs) are an innovative and emerging technique based on the use of solid-state electrodes to stimulate microbial metabolism for wastewater treatment and simultaneous production of value-added compounds (such as methane). This research studied the performance of a two-chamber MEC in terms of organic matter oxidation (at the anode) and methane production (at the cathode). MEC‟s anode had been previously inoculated with an activated sludge, whereas the cathode chamber inoculum was an anaerobic sludge (containing methanogenic microorganisms). During the experimentation, the bioanode was continuously fed with synthetic solutions in anaerobic basal medium, at an organic load rate (OLR) of around 1 g L-1 d-1, referred to the chemical oxygen demand (COD). At the beginning (Run I), the feeding solution contained acetate and subsequently (Run II) it was replaced with a more complex solution containing soluble organic compounds other than acetate. For both conditions, the anode potential was controlled at -0.1 V vs. standard hydrogen electrode, by means of a potentiostat. During Run I, over 80% of the influent acetate was anaerobically oxidized at the anode, and the resulting electric current was recovered as methane at the cathode (with a cathode capture efficiency, CCE, accounting around 115 %). The average energy efficiency of the system (i.e., the energy captured into methane relative to the electrical energy input) under these conditions was over 170%. However, reactor‟s performance decreased over time during this run. Throughout Run II, a substrate oxidation over 60% (on COD basis) was observed. The electric current produced (57% of coulombic efficiency) was also recovered as methane, with a CCE of 90%. For this run the MEC‟s average energy efficiency accounted for almost 170 %. During all the experimentation, a very low biomass growth was observed at the anode whereas ammonium was transferred through the cationic membrane and concentrated at the cathode. Tracer experiments and scanning electron microscopy analyses were also carried out to gain a deeper insight into the reactor performance and also to investigate the possible reasons for partial loss of performance. In conclusion, this research suggests the great potential of MEC to successfully treat low-strength wastewaters, with high energy efficiency and very low sludge production.
Resumo:
Information systems are widespread and used by anyone with computing devices as well as corporations and governments. It is often the case that security leaks are introduced during the development of an application. Reasons for these security bugs are multiple but among them one can easily identify that it is very hard to define and enforce relevant security policies in modern software. This is because modern applications often rely on container sharing and multi-tenancy where, for instance, data can be stored in the same physical space but is logically mapped into different security compartments or data structures. In turn, these security compartments, to which data is classified into in security policies, can also be dynamic and depend on runtime data. In this thesis we introduce and develop the novel notion of dependent information flow types, and focus on the problem of ensuring data confidentiality in data-centric software. Dependent information flow types fit within the standard framework of dependent type theory, but, unlike usual dependent types, crucially allow the security level of a type, rather than just the structural data type itself, to depend on runtime values. Our dependent function and dependent sum information flow types provide a direct, natural and elegant way to express and enforce fine grained security policies on programs. Namely programs that manipulate structured data types in which the security level of a structure field may depend on values dynamically stored in other fields The main contribution of this work is an efficient analysis that allows programmers to verify, during the development phase, whether programs have information leaks, that is, it verifies whether programs protect the confidentiality of the information they manipulate. As such, we also implemented a prototype typechecker that can be found at http://ctp.di.fct.unl.pt/DIFTprototype/.
Resumo:
This study deals with the characterization of masonry mortars produced with different binders and sands. Several properties of the mortars were determined, like consistence, compressive and flexural strengths, shrinkage and fracture energy. By varying the type of binder (Portland cement, hydrated lime and hydraulic lime) and the type of sand (natural or artificial), it was possible to draw some conclusions about the influence of the composition on mortars properties. The results showed that the use of Portland cement makes the achievement of high strength classes easier. This was due to the slower hardening of lime compared with cement. The results of fracture energy tests showed much higher values for artificial sand mortars when compared with natural sand ones. This is due to the higher roughness of artificial sand particles which provided better adhesion between sand and binder.
Resumo:
This study aims to develop an innovative carbon fibre reinforced polymer (CFRP) laminate with a U configuration to address strengthening interventions, where the increment of both flexural and shear capacity of reinforced concrete (RC) elements is required. This strengthening solution combines the near surface mounted (NSM) and embedded through section (ETS) techniques in the same application, since these techniques have already evidenced high performance on flexural and shear strengthening of RC beams using FRP systems, respectively. In fact, the proposed hybrid technique aims to mobilize the advantages provided by these two strengthening techniques by using an innovative CFRP laminate. The strengthening efficacy of this new hybrid NSM/ETS technique was numerically assessed and compared to the corresponding efficiency of NSM and ETS techniques applied separately for the flexural and shear strengthening of RC beams, respectively. The numerical models are described and the main relevant results are presented and discussed.
Resumo:
In Maternity Care, a quick decision has to be made about the most suitable delivery type for the current patient. Guidelines are followed by physicians to support that decision; however, those practice recommendations are limited and underused. In the last years, caesarean delivery has been pursued in over 28% of pregnancies, and other operative techniques regarding specific problems have also been excessively employed. This study identifies obstetric and pregnancy factors that can be used to predict the most appropriate delivery technique, through the induction of data mining models using real data gathered in the perinatal and maternal care unit of Centro Hospitalar of Oporto (CHP). Predicting the type of birth envisions high-quality services, increased safety and effectiveness of specific practices to help guide maternity care decisions and facilitate optimal outcomes in mother and child. In this work was possible to acquire good results, achieving sensitivity and specificity values of 90.11% and 80.05%, respectively, providing the CHP with a model capable of correctly identify caesarean sections and vaginal deliveries.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica.
Resumo:
The monitoring data collected during tunnel excavation can be used in inverse analysis procedures in order to identify more realistic geomechanical parameters that can increase the knowledge about the interested formations. These more realistic parameters can be used in real time to adapt the project to the real structure in situ behaviour. However, monitoring plans are normally designed for safety assessment and not especially for the purpose of inverse analysis. In fact, there is a lack of knowledge about what types and quantity of measurements are needed to succeed in identifying the parameters of interest. Also, the optimisation algorithm chosen for the identification procedure may be important for this matter. In this work, this problem is addressed using a theoretical case with which a thorough parametric study was carried out using two optimisation algorithms based on different calculation paradigms, namely a conventional gradient-based algorithm and an evolution strategy algorithm. Calculations were carried for different sets of parameters to identify several combinations of types and amount of monitoring data. The results clearly show the high importance of the available monitoring data and the chosen algorithm for the success rate of the inverse analysis process.