988 resultados para Sub-half-wavelength


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbonyl-iridium half-sandwich compounds, Cp*Ir(CO)(EPh)(2) (E = S, Se), were prepared by the photo-induced reaction of Cp*Ir(CO)(2) with the diphenyl dichalcogenides, E2Ph2, and used as neutral chelating ligands in carbonylmetal complexes such as Cp*Ir(CO)(mu-EPh)(2)[Cr(CO)(4)], Cp*Ir(CO)(mu-EPh)(2)[Mo(CO)(4)] and Cp*Ir(CO)(mu-EPh)(2)[Fe(CO)(3)], respectively. A trimethylphosphane - iridium analogue, Cp*Ir(PMe3)(mu-SeMe)(2)[Cr(CO)(4)], was also obtained. The new heterodimetallic complexes were characterized by IR and NMR spectroscopy, and the molecular geometry of Cp*Ir(CO)(mu-SePh)(2)[Mo(CO)(4)] has been determined by a single crystal X-ray structure analysis. According to the long Ir...Mo distance (395.3(1) Angstrom), direct metal-metal interactions appear to be absent. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant correlation was found between half-wave potentials of organic compounds and their topological indices, A(x1), A(x2), and A(x3). The simplicity of calculation of the index from the connectivity in the molecular skeleton, together with the significant correlation, indicates its practical value. Good results have been obtained by using them to predict the half-wave potentials of some organic compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of Kalman filtering, synchronous excitation and numerical derivative techniques for the resolution of overlapping emission spectra in spectrofluorimetry was studied. The extent of spectrum overlap was quantitatively described by the separation degree D(s), defined as the ratio of the peak separation to the full width at half-maximum of the emission spectrum of the interferent. For the system of Rhodamine B and Rhodamine 6G with a large D(s) of about 0.4, both Kalman filtering and synchronous techniques are able to resolve the overlapping spectra well and to give satisfactory results while the derivative spectra are still overlapped with each other. Moreover, the sensitivities are greatly decreased in derivative techniques. For more closely spaced spectra emitted by the complexes of Al and Zn with 7-iodo-8-hydroxyquinoline-5-sulphonic acid (Ferron)-hexadecyltrimethylammonium bromide, the synchronous excitation technique cannot completely separate the overlapping peaks, although it increases the separation degree from 0.25 in the conventional spectra to 0.37 in the synchronous spectra. On the other hand, Kalman filtering is capable of resolving this system. When the Al/Zn intensity ratio at the central wavelength of Al was > 1, however, the accuracy and precision of the estimates for Zn concentration produced by the Kalman filter became worse. In this event, the combination of synchronous excitation and Kalman filtering can much improve the analytical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper reports some definite evidence for the significance of wavelength positioning accuracy in multicomponent analysis techniques for the correction of line interferences in inductively coupled plasma atomic emission spectrometry (ICP-AES). Using scanning spectrometers commercially available today, a large relative error, DELTA(A) may occur in the estimated analyte concentration, owing to wavelength positioning errors, unless a procedure for data processing can eliminate the problem of optical instability. The emphasis is on the effect of the positioning error (deltalambda) in a model scan, which is evaluated theoretically and determined experimentally. A quantitative relation between DELTA(A) and deltalambda, the peak distance, and the effective widths of the analysis and interfering lines is established under the assumption of Gaussian line profiles. The agreement between calculated and experimental DELTA(A) is also illustrated. The DELTA(A) originating from deltalambda is independent of the net analyte/interferent signal ratio; this contrasts with the situation for the positioning error (dlambda) in a sample scan, where DELTA(A) decreases with an increase in the ratio. Compared with dlambda, the effect of deltalambda is generally less significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper deals with the evaluation of the relative error (DELTA(A)) in estimated analyte concentrations originating from the wavelength positioning error in a sample scan when multicomponent analysis (MCA) techniques are used for correcting line interferences in inductively coupled plasma atomic emission spectrometry. In the theoretical part, a quantitative relation of DELTA(A) with the extent of line overlap, bandwidth and the magnitude of the positioning error is developed under the assumption of Gaussian line profiles. The measurements of eleven samples covering various typical line interferences showed that the calculated DELTA(A) generally agrees well with the experimental one. An expression of the true detection limit associated with MCA techniques was thus formulated. With MCA techniques, the determination of the analyte and interferent concentrations depend on each other while with conventional correction techniques, such as the three-point method, the estimate of interfering signals is independent of the analyte signals. Therefore. a given positioning error results in a larger DELTA(A) and hence a higher true detection limit in the case of MCA techniques than that in the case of conventional correction methods. although the latter could be a reasonable approximation of the former when the peak distance expressed in the effective width of the interfering line is larger than 0.4. In the light of the effect of wavelength positioning errors, MCA techniques have no advantages over conventional correction methods unless the former can bring an essential reduction ot the positioning error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The half-open vanadocene, V[2,4-(CH3)2C5H5](C5H5)CO, was obtained by the reaction of V[2,4-(CH3)2C5H5](C5H5)PMe3 with CO in petroleum ether at room temperature. Its crystal structure was determined by X-ray diffraction technique. The crystal was monoclinic with space group P2(1)/n, a = 16.614(3), b = 7.636(1), c = 19.128(6) angstrom, beta = 99.92(2)-degrees, V = 2390.5(9) angstrom3, and Z = 8. The final R value was 0.043. The V(1)-CPD(1) (half) (PD = 2,4-(CH3)2C5H5) bonds were shorter (0.038 angstrom) than the V(1)-CCP(1) (half) (CP = C5H5) bonds, averaging 2.224(4) versus 2.262(4) angstrom, respectively. 4V[2,4-(CH3)2C5H5](C5H5)CO has been characterized by IR and EPR methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluates the effect of wavelength positioning errors in spectral scans on analytical results when the Kalman filtering technique is used for the correction of line interferences in inductively coupled plasma atomic emission spectrometry (ICP-AES). The results show that a positioning accuracy of 0.1 pm is required in order to obtain accurate and precise estimates for analyte concentrations. The positioning error in sample scans is more crucial than that in model scans. The relative bias in measured analyte concentration originating from a positioning error in a sample scan increases linearly with an increase in the magnitude of the error and the peak distance of the overlapping lines, but is inversely proportional to the signal-to-background ratio. By the use of an optimization procedure for the positions of scans with the innovations number as the criterion, the wavelength positioning error can be reduced and, correspondingly, the accuracy and precision of analytical results improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. This paper investigated the bioenergetic responses of the sea cucumber Apostichopus japonicus (wet weights of 36.5 +/- 1.2 g) to different water temperatures (5, 10, 15, 20, 25 and 30 degrees C) in the laboratory. 2. Results showed that theoretically the optimal temperatures for energy intake and scope for growth (SFG) of sub-adult A. japonicus was at 15.6 and 16.0 degrees C, respectively. The aestivation threshold temperature for this life-stage sea cucumber could be 29.0 degrees C by taking feeding cessation as the indication of aestivation. 3. Our data suggests that A. japonicus is thermo-sensitive to higher temperature, which prevents it from colonising sub-tropical coastal zones. Therefore, water temperature plays an important role in its southernmost distribution limit in China. 4. The potential impact of global ocean warming on A. japonicus might be a northward shift in the geographical distribution. Crown Copyright (C) 2009 Published by Elsevier Ltd, All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on geophysical and geological data in Jiyang depression, the paper has identified main unconformity surfaces (main movement surfaces) and tectonic sequences and established tectonic and strata framework for correlation between different sags. Based on different sorts of structural styles and characteristics of typical structures, the paper summarized characteristics and distribution of deep structures, discussed evolution sequence of structure, analyzed the relation between tectonic evolution and generation of petroleum. The major developments are as following: Six tectonic sequences could be divided from bottom to top in the deep zone of Jiyang depression. These tectonic sequences are Cambrian to Ordovician, Carboniferous to Permian, lower to middle Jurassic, upper Jurassic to lower Cretaceous, upper Cretaceous and Kongdian formation to the fourth member of Shahejie formation. The center of sedimentation and subsidence of tectonic sequences distinguished from each other in seismic profiles is controlled by tectonic movements. Six tectonic evolution stages could be summarized in the deep zone in Jiyang depression. Among these stages, Paleozoic stage is croton sedimentation basin; Indosinian stage, open folds of EW direction are controlled by compression of nearly SN direction in early Indosinian (early to middle Triassic) while fold thrust fault of EW – NWW direction and arch protruding to NNE direction are controlled by strong compression in late Indosinian (latter Triassic); early Yanshanian stage (early to middle Jurassic), in relatively weak movement after Indosinian compressional orogeny, fluviolacustrine is deposited in intermontane basins in the beginning of early Yanshanian and then extensively denudated in the main orogenic phase; middle Yanshanian (late Jurassic to early Cretaceous), strike-slipping basins are wide distribution with extension (negative reversion) of NW – SE direction; latter Yanshanian (late Cretaceous), fold and thrust of NE – NNE direction and positive reversion structure of late Jurassic to early Cretaceous strike-slipping basin are formed by strong compression of NW–SE direction; sedimentation stage of Kongdian formation to the fourth member of Shahejie formation of Cenozoic, half graben basins are formed by extension of SN direction early while uplift is resulted from compression of nearly EW direction latterly. Compression system, extension system and strike-slip system are formed in deep zone of Jiyang depression. According to identifying flower structure of seismic profiles and analysis of leveling layer slice of 3D seismic data and tectonic map of deep tectonic interface, strike-slip structures of deep zone in Jiyang depression are distinguished. In the middle of the Jiyang depression, strike-slip structures extend as SN direction, NNW direction in Huimin sag, but NNE in Zhandong area. Based on map of relict strata thickness, main faults activity and regional tectonic setting, dynamic mechanisms of deep structure are preliminary determination. The main reason is the difference of direction and character of the plate’s movement. Development and rework of multi-stage tectonic effects are benefit for favorable reservoir and structural trap. Based on tectonic development, accumulation conditions of deep sub-sags and exploration achievements in recent years, potential zones of oil-gas reservoir are put forward, such as Dongying sag and Bonan sag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rockmass movement due to mining steep metallic ore body is a considerable question in the surface movement and deformation issue caused by underground mining. Research on coal mining induced rockmass movement and its prediction problem have been performed for a long-term, and have achieved great progress at home and abroad. However, the rockmass movement caused by mining steep metal mine is distinctivly different from coal seam mining.. Existing surface movement laws and deformation prediction methods are not applicable to the rockmass movement caused by mining steep metal mine. So far the home and abroad research to this theory is presently at an early stage, and there isn’t mature theory or practical prediction method, which made a great impact on production. In this paper, the research object—Jinchuan nickel mine, which is typical steep metal mine, characterized by complex geological conditions, developed faults, cracked rockmass, high geostress, and prominent engineering stability problems. In addition, backfill mining method is used in the mine, the features of rockmass movement caused by this mining method are also different from other mining methods. In this paper, the laws of rock mass movement, deformation and destroy mechanism, and its prediction were analyzed based on the collection of data, detailed in-sit engineering geology survey, ground movement monitoring by GPS, theoretical analysis and numerical simulation. According to the GPS monitoring of ground surface movement, ground subsidence basin with apparent asymmetry is developing, the influence scope is larger in the upper faulted block than in the lower faulted block, and the center of ground movement is moving along the upper faulted block direction with increasing depth of mining. During the past half and seven years, the largest settlement has amounted to 1287.5mm, and corresponding horizontal displacement has amounted to 664.6mm. On the ground surface, two fissure belts show a fast-growing trend of closure. To sum up, mining steep metal mine with backfill method also exist the same serious problem of rockmass movement hazards. Fault, as a low intensity zone in rockmass, when it located within the region of mining influence, the change of potential energy mainly consumed in fault deformation associated with rockmass structure surface friction, which is the essence of displacement and stress barrier effects characterized by fault rupture zone. when steep fault located in the tensile deformation region incurred by underground excavation, no matter excavation in hangingwall or in footwall of the fault, there will be additional tensile stress on the vertical fault plane and decrease in the shear strength, and always showing characteristics of normal fault slip, which is the main reason of fault escarpment appeared on the ground surface. The No.14 shaft deformation and failure is triggered by fault activation, which showed with sidewall move, rupture, and break down features as the main form of a concentrated expression of fault effects. The size and orientation of principal stress in surrounding rock changed regularly with mining; therefore, roadway deformation and damage at different stages have different characteristics and distribution models. During the process of mining, low-intensity weak structures surface always showed the most obvious reaction, accompany with surface normal stress decrease and shear strength bring down, to some extent, occurred with relative slide and deformation. Meanwhile, the impact of mining is a relatively long process, making the structure surface effect of roadway deformation and damage more prominent than others under the influence of mining. Roadway surrounding rockmass deformation caused by the change of strain energy density field after excavation mainly belongs to elastic deformation, and the correspondented damage mainly belongs to brittle rupture, in this circumstance, surrounding rockmass will not appear large deformation. The large deformation of surrounding rockmass can only be the deformation associated with structure surface friction or the plastic deformation of itself, which mainly caused by the permanent self-weigh volume force,and long-term effect of mining led to the durability of this deformation Good pitting fill effect and supporting effect of backfill, as well as the friction of rockmass structure surface lead to obvious macro-rockmass movement with long-lag characteristics. In addition, the loss of original intensity and new structure surface arisen increased flexibility in rockmass and fill deformation in structure surface, which made the time required for rockmass potential energy translate into deformation work associated with plastic deformation and structure surface friction consumed much, and to a large extent, eliminated the time needed to do those plastic work during repeated mining, all of which are the fundamental reason of rockmass movement aftereffect more significant than before. Mining steep deposits in high tectonic stress area and in gravity stress area have different movement laws and deformation mechanism. The steep deposit, when the vertical size of the mining areas is smaller than the horizontal size of the orebody, no matter mining in gravity stress area or in high tectonic stress area, they have similar features of ground movement with mining horizontal orebody; contrarily, there will appear double settlement centers on the ground surface under the condition of mining in high tectonic stress area, while there will always be a single center under the other condition. Meanwhile the ground movement lever, scale of mining influence area and macro features of ground movement, deformation and fracture are also different from mining in gravity stress area, and the fundamental reason lies in the impact of orientation of the maximum principal stress on rock movement features in in-site rock stress field. When mining thick and steep deposit, the ground surface movement and deformation characteristic curves are significantly different from excavating the horizontal ore bed and thin steep deposit. According to the features of rockmass movement rate, the development process of mining-induced rockmass movement is divided into three stages: raising stage, steadily stage and gradually decay stage. Considering the actual exploitation situation, GPS monitoring results and macro-characteristics of surface movement, the current subsidence pattern of Jinchuan No.2 mine is in the early stage of development. Based on analysis of surface movement rate, surface subsidence rate increase rapidly when mining in double lever at the same time, and reach its peak until the exploitation model ended. When double lever mining translate into single, production decreased, surface subsidence rate suddenly start to reduce and maintain a relatively low value, and the largest subsidence center will slowly move along with the hangingwall ore body direction with increasing depth of mining, at the same time, the scope and extent of subsidence in footwall ore body will begin magnify, and a sub-settlement center will appear on ground surface, accompanied with the development and closure trend of ground fissure, the surrounding rockmass of shaft and roadway will be confronted to more frequent and severe deformation and failure, and which will have a negative impact on the overall stability of No.2 mine mining. On the premise of continuity of rockmass movement, gray system model can be used in ground rockmass movement prediction for good results. Under the condition of backfill mining step by step, the loose effect of compact status of the hard, broken rockmass led to lower energy release rate, although surrounding rockmass has high elastic energy, loose and damage occurred in the horizontal ore body, which made the mining process safety without any large geological hazards. During the period of mining the horizontal ore body to end, in view of its special “residual support role”, there will be no large scale rockmass movement hazards. Since ground surface movement mainly related to the intensity of mining speed and backfill effect, on the premise of constant mining speed, during the period of mining the horizontal ore body to end, the rate of ground surface rockmass movement and deformation won’t have sudden change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the study of sequence stratigraphy, modern sedimentary, basin analysis, and petroleum system in abrupt slop of depression, this paper builds sedimentary system and model, sandy bodies distribution, and pool-forming mechanism of subtle trap. There are some conclusions and views as follows. By a lot of well logging and seismic analysis, the author founded up the sequence stratigraphic of the abrupt slope, systematically illustrated the abrupt slope constructive framework, and pointed out that there was a special characteristics which was that south-north could be divided to several fault block and east-west could be carved up groove and the bridge in studying area. Based all these, the author divided the studying area to 3 fault block zone in which because of the groove became the basement rock channel down which ancient rivers breathed into the lake, the alluvial fan or fan delta were formed. In the paper, the author illustrated the depositional system and depositional model of abrupt slope zone, and distinguished 16 kinds of lithofacies and 3 kinds of depositional systems which were the alluvial fan and fan-delta system, lake system and the turbidite fan or turbidity current deposition. It is first time to expound completely the genetic pattern and distributing rule of the abrupt slope sandy-conglomeratic fan bodies. The abrupt slope sandy-conglomeratic fan bodies distribute around the heaves showing itself circularity shape. In studying area, the sandy-conglomeratic fan bodies mainly distribute up the southern slope of Binxian heave and Chenjiazhuang heave. There mainly are these sandy-conglomeratic fan body colony which distributes at a wide rage including the alluvial fan, sub-water fluvial and the turbidite fan or the other turbidity current deposition in the I fault block of the Wangzhuang area. In the II fault block there are fan-delta front and sub-water fluvial. And in the Binnan area, there mainly are those the alluvial fan (down the basement rock channel) and the sandy-conglomeratic fan body which formed as narrowband sub-water fluvial (the position of bridge of a nose) in the I fault block, the fan-delta front sandy-conglomeratic fan body in the H fault block and the fan-delta front and the turbidity current deposition sandy-conglomeratic fan body in the m fault block. Based on the reservoir outstanding characteristics of complex classic composition and the low texture maturity, the author comparted the reservoir micro-structure of the Sha-III and Sha-IV member to 4 types including the viscous crude cementation type, the pad cementation type, the calcite pore-funds type and the complex filling type, and hereby synthetically evaluated 4 types sandy- conglomeratic fan body reservoir. In the west-north abrupt slope zone of Dongying Depression, the crude oil source is belonging to the Sha-III and Sha-IV member, the deep oil of Lijin oilfield respectively come from the Sha-III and Sha-IV member, which belongs to the autogeny and original deposition type; and the more crude oil producing by Sha-IV member was migrated to the Wangzhuan area and Zhengjia area. The crude oil of Binnan oil-field and Shanjiasi oil-field belongs to mixed genetic. It is the first time to illustrate systematically the genetic of the viscous crude that largely being in the studying area, which are that the dissipation of the light component after pool-forming, the biological gradation action and the bath-oxidation action, these oil accumulation belonging to the secondary viscous crude accumulation. It is also the first time to compart the studying area to 5 pool-forming dynamical system that have the characteristic including the common pressure and abnormal pressure system, the self-fountain and other-fountain system and the closing and half-closing system etc. The 5 dynamical systems reciprocally interconnected via the disappearance or merger of the Ethology and the fluid pressure compartment zone, the fault and the unconformity surface, hereby formed duplicated pattern oil-gas collecting zone. Three oil-gas pool-forming pattern were founded, which included the self-fountain side-direction migrated collecting pattern, the self-fountain side-direction ladder-shape pool-forming pattern and the other-fountain pressure releasing zone migrated collecting pattern. A series of systemic sandy-conglomeratic fan bodies oil-gas predicting theory and method was founded, based on the groove-fan corresponding relation to confirm the favorable aim area, according as the characteristic of seismic-facies to identify qualitatively the sandy-conglomeratic fan bodies or its scale, used the temporal and frequency analysis technique to score the interior structure of the sandy- conglomeratic fan bodies, applied for coherent-data system analysis technology to describe the boundary of the sandy-conglomeratic fan bodies, and utilized the well logging restriction inversion technique to trace quantificational and forecast the sandy-conglomeratic fan bodies. Applied this technique, totally 15 beneficial sandy-conglomeratic fan bodies were predicted, in studying area the exploration was preferably guided, and the larger economic benefit and social benefit was acquired.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The topic of this study is about the propagation features of elastic waves in the anisotropic and nonlinear media by numerical methods with high accuracy and stability. The main achievements of this paper are as followings: Firstly, basing on the third order elastic energy formula, principle of energy conservation and circumvolved matrix method, we firstly reported the equations of non-linear elastic waves with two dimensions and three components in VTI media. Secondly, several conclusions about some numerical methods have been obtained in this paper. Namely, the minimum suitable sample stepth in space is about 1/8-1/12 of the main wavelength in order to distinctly reduce the numerical dispersion resulted from the numerical mehtod, at the same time, the higher order conventional finite difference (CFD) schemes will give little contribution to avoid the numerical solutions error accumulating with time. To get the similar accuracy with the fourth order center finite difference method, the half truncation length of SFFT should be no less than 7. The FDFCT method can present with the numerical solutions without obvious dispersion when the paprameters of FCT is suitable (we think they should be in the scope from 0.0001 to 0.07). Fortunately, the NADM method not only can reported us with the higher order accuracy solutions (higher than that of the fourth order finite difference method and lower than that of the sixth order finite difference method), but also can distinctly reduce the numerical dispersion. Thirdly, basing on the numerial and theoretical analysis, we reported such nonlinear response accumulating with time as waveform aberration, harmonic generation and resonant peak shift shown by the propagation of one- and two-dimensional non-linear elasticwaves in this paper. And then, we drew the conclusion that these nonlinear responses are controlled by the product between nonlinear strength (SN) and the amplitude of the source. At last, the modified FDFCT numerical method presented by this paper is used to model the two-dimensional non-linear elastic waves propagating in VTI media. Subsequently, the wavelet analysis and polarization are adopted to investigate and understand the numerical results. And then, we found the following principles (attention: the nonlinear strength presented by this paper is weak, the thickness of the -nonlinear media is thin (200m), the initial energy of the source is weak and the anisotropy of the media is weak too): The non-linear response shown by the elastic waves in VTI media is anisotropic too; The instantaneous main frequency sections of seismic records resulted from the media with a non-linear layer have about 1/4 to 1/2 changes of the initial main frequency of source with that resulted from the media without non-linear layer; The responses shown by the elasic waves about the anisotropy and nonlinearity have obvious mutual reformation, namely, the non-linear response will be stronger in some directions because of the anisotropy and the anisotropic strength shown by the elastic waves will be stronger when the media is nonlinear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No caso de mamoeiro, cuidados especiais devem ser tomados com a nutrição das plantas, pois a cultura é muito exigente principalmente em N e K; com a incidência de pragas que demandam intenso monitoramento do pomar; e com controle correto da umidade do solo, em função da planta ser muito sensível ao déficit hídrico e ao encharcamento. Neste caso, é importante que o irrigante monitore a umidade do solo, por exemplo, com uso de tensiômetros, e calcule a lâmina de irrigação com base na demanda de água da atmosfera, que varia diariamente em função dos elementos meterológico reinantes no ambiente em que se encontra o pomar irrigado (temperatura do ar (°C), Radiação Solar (MJ m² dia -¹), Velocidade do vento (m s-¹) e Umidade Relativa do Ar (%)).