987 resultados para Structural complexity
DPS-Like Peroxide Resistance Protein: Structural and Functional Studies on a Versatile Nanocontainer
Resumo:
Oxidative stress is a constant threat to almost all organisms. It damages a number of biomolecules and leads to the disruption of many crucial cellular functions. It is caused by reactive oxygen species (ROS), such as hydrogen peroxide (H
Resumo:
ABSTRACTWhile a number of papers have shown that subway systems have an impact on the air quality through the release of particulate matters, no information about the impact of such particles on tree attributes is available. Tree leaves from three different species from the exit side of a subway station in Rio de Janeiro, Brazil, were more asymmetrical than leaves from the entrance side. This leaves also presenting changes in leaves cuticle and chlorophyll content.
Resumo:
ABSTRACT In Brazil, specifically in São Paulo State, there are guidelines based on the high diversity of tropical forests that instructs the restoration projects in the state (current SMA 32/2014). The main goal of this study was verify the importance and effectiveness of the high diversity of arboreal species originated from a reforestation, and its influence in a woody regenerating composition. We developed a phytosociologic study in a woody regenerating stratum of a nine year old reforestation at a Private Reserve of Natural Heritage (RPPN), in Mogi-Guaçu, São Paulo State. All specimens with height > 30 cm and Diameter at Breast Height (DBH) < 5 cm were evaluated. The woody regenerating diversity was smaller than the overstory diversity and the species composition was similar to the overstory. The Simpson index (1-D) was 0.85, Shannon index (H') was 2.46 and the Pielou index (J') was 0.60. The zoochoric dispersion syndrome was major among the species. Our results suggest that the use of high diversity of native seedlings in a reforestation leads to high diversity of species in woody regeneration stratum, after one decade of planting.
Resumo:
Software systems are expanding and becoming increasingly present in everyday activities. The constantly evolving society demands that they deliver more functionality, are easy to use and work as expected. All these challenges increase the size and complexity of a system. People may not be aware of a presence of a software system, until it malfunctions or even fails to perform. The concept of being able to depend on the software is particularly significant when it comes to the critical systems. At this point quality of a system is regarded as an essential issue, since any deficiencies may lead to considerable money loss or life endangerment. Traditional development methods may not ensure a sufficiently high level of quality. Formal methods, on the other hand, allow us to achieve a high level of rigour and can be applied to develop a complete system or only a critical part of it. Such techniques, applied during system development starting at early design stages, increase the likelihood of obtaining a system that works as required. However, formal methods are sometimes considered difficult to utilise in traditional developments. Therefore, it is important to make them more accessible and reduce the gap between the formal and traditional development methods. This thesis explores the usability of rigorous approaches by giving an insight into formal designs with the use of graphical notation. The understandability of formal modelling is increased due to a compact representation of the development and related design decisions. The central objective of the thesis is to investigate the impact that rigorous approaches have on quality of developments. This means that it is necessary to establish certain techniques for evaluation of rigorous developments. Since we are studying various development settings and methods, specific measurement plans and a set of metrics need to be created for each setting. Our goal is to provide methods for collecting data and record evidence of the applicability of rigorous approaches. This would support the organisations in making decisions about integration of formal methods into their development processes. It is important to control the software development, especially in its initial stages. Therefore, we focus on the specification and modelling phases, as well as related artefacts, e.g. models. These have significant influence on the quality of a final system. Since application of formal methods may increase the complexity of a system, it may impact its maintainability, and thus quality. Our goal is to leverage quality of a system via metrics and measurements, as well as generic refinement patterns, which are applied to a model and a specification. We argue that they can facilitate the process of creating software systems, by e.g. controlling complexity and providing the modelling guidelines. Moreover, we find them as additional mechanisms for quality control and improvement, also for rigorous approaches. The main contribution of this thesis is to provide the metrics and measurements that help in assessing the impact of rigorous approaches on developments. We establish the techniques for the evaluation of certain aspects of quality, which are based on structural, syntactical and process related characteristics of an early-stage development artefacts, i.e. specifications and models. The presented approaches are applied to various case studies. The results of the investigation are juxtaposed with the perception of domain experts. It is our aspiration to promote measurements as an indispensable part of quality control process and a strategy towards the quality improvement.
Disturbing Whiteness: The Complexity of White Female Identity in Selected Works by Joyce Carol Oates
Resumo:
Currently, the standards that deal with the determination of the properties of rigidity and strength for structural round timber elements do not take in consideration in their calculations and mathematical models the influence of the existing irregularities in the geometry of these elements. This study has as objective to determine the effective value of the modulus of longitudinal elasticity for structural round timber pieces of the Eucalyptus citriodora genus by a technique of optimization allied to the Inverse Analysis Method, to the Finite Element Method and the Least Square Method.
Resumo:
Round timber has great use in civil construction, performing the function of beams, columns, foundations, poles for power distribution among others, with the advantage of not being processed, such as lumber. The structural design of round timber requires determining the elastic properties, mainly the modulus of elasticity. The Brazilian standards responsible for the stiffness and strength determination of round timber are in effect for over twenty years with no technical review. Round timber, for generally present an axis with non-zero curvature according to the position of the element in the bending test, may exhibit different values of modulus of elasticity. This study aims to analyze the position effect of Eucalyptus grandis round timber on the flexural modulus of elasticity. The three-point bending test was evaluated in two different positions based on the longitudinal rotation of the round timber element. The results revealed that at least two different positions of the round timber element are desired to obtain significant modulus of elasticity.
Resumo:
This study aims to present an alternative calculation methodology based on the Least Squares Method for determining the modulus of elasticity in bending wooden beams of structural dimensions. The equations developed require knowledge of three or five points measured in displacements along the piece, allowing greater reliability on the response variable, using the statistical bending test at three points and non-destructively, resulting from imposition of measures from small displacements L/300 and L/200, the largest being stipulated by the Brazilian norm NBR 7190:1997. The woods tested were Angico, Cumaru, Garapa and Jatoba. Besides obtaining the modulus of elasticity through the alternative methodology proposed, these were also obtained employing the Brazilian norm NBR 7190:1997, adapted to the condition of non-destructive testing (small displacements) and for pieces of structural dimensions. The results of the modulus of elasticity of the four species of wood according to both calculation approaches used proved to be equivalent, implying the good approximation provided by the methodology of calculation adapted from the Brazilian norm.
Resumo:
Atomic structure of ZrO2 and B2O3 was investigated in this work. New data under extreme conditions (T = 3100 K) was obtained for the liquid ZrO2 structure. A fractional number of boron was investigated for glassy structure of B2O3. It was shown that it is possible to obtain an agreement for the fractional number between NMR and DFT techniques using a suitable initial configuration.
Resumo:
Modern machine structures are often fabricated by welding. From a fatigue point of view, the structural details and especially, the welded details are the most prone to fatigue damage and failure. Design against fatigue requires information on the fatigue resistance of a structure’s critical details and the stress loads that act on each detail. Even though, dynamic simulation of flexible bodies is already current method for analyzing structures, obtaining the stress history of a structural detail during dynamic simulation is a challenging task; especially when the detail has a complex geometry. In particular, analyzing the stress history of every structural detail within a single finite element model can be overwhelming since the amount of nodal degrees of freedom needed in the model may require an impractical amount of computational effort. The purpose of computer simulation is to reduce amount of prototypes and speed up the product development process. Also, to take operator influence into account, real time models, i.e. simplified and computationally efficient models are required. This in turn, requires stress computation to be efficient if it will be performed during dynamic simulation. The research looks back at the theoretical background of multibody dynamic simulation and finite element method to find suitable parts to form a new approach for efficient stress calculation. This study proposes that, the problem of stress calculation during dynamic simulation can be greatly simplified by using a combination of floating frame of reference formulation with modal superposition and a sub-modeling approach. In practice, the proposed approach can be used to efficiently generate the relevant fatigue assessment stress history for a structural detail during or after dynamic simulation. In this work numerical examples are presented to demonstrate the proposed approach in practice. The results show that approach is applicable and can be used as proposed.
Resumo:
In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.
Resumo:
Porcine circovirus 2 (PCV2) is generally associated with the porcine circovirosis syndrome, which is considered an important disease of swine and has potentially serious economic impact on the swine industry worldwide. This article describes the construction of a recombinant plasmid expressing the PCV2 structural protein and the evaluation of cellular and humoral immune responses produced by this recombinant vaccine in BALB/c mice. The vaccine candidate was obtained and analyzed in vivo, in an effort to determine the ability to induce a specific immune response in mice. DNA was extracted from a Brazilian PCV2 isolate and the gene coding for Cap protein was amplified by PCR and inserted into an expression plasmid. Groups of BALB/c mice were inoculated intra-muscularly and intradermally in a 15-day interval, with 100 µg and 50 µg of the vaccine construct, respectively. Another group was inoculated intramuscularly with 100 µg of empty plasmid, corresponding to the control group. Seroconversion and cellular response in BALB/c mice were compared and used for vaccine evaluation. Seroconversion was analyzed by ELISA. After a series of 3 immunizations the spleen cells of the immunized animals were used to perform lymphocyte proliferation assays. Seroconversion to PCV2 was detected by ELISA in the animals inoculated with the vaccine construct when compared with control groups. Lymphocyte proliferation assays showed a stronger cell proliferation in the inoculated animals compared with the control group. Thus, the vaccine candidate construct demonstrated to be able to induce both humoral and cellular responses in inoculated mice.
Resumo:
This thesis describes an approach to overcoming the complexity of software product management (SPM) and consists of several studies that investigate the activities and roles in product management, as well as issues related to the adoption of software product management. The thesis focuses on organizations that have started the adoption of SPM but faced difficulties due to its complexity and fuzziness and suggests the frameworks for overcoming these challenges using the principles of decomposition and iterative improvements. The research process consisted of three phases, each of which provided complementary results and empirical observation to the problem of overcoming the complexity of SPM. Overall, product management processes and practices in 13 companies were studied and analysed. Moreover, additional data was collected with a survey conducted worldwide. The collected data were analysed using the grounded theory (GT) to identify the possible ways to overcome the complexity of SPM. Complementary research methods, like elements of the Theory of Constraints were used for deeper data analysis. The results of the thesis indicate that the decomposition of SPM activities depending on the specific characteristics of companies and roles is a useful approach for simplifying the existing SPM frameworks. Companies would benefit from the results by adopting SPM activities more efficiently and effectively and spending fewer resources on its adoption by concentrating on the most important SPM activities.
Resumo:
The rising demand for oil and gas has made it very necessary for the oil and gas industries to explore the offshore. There is a huge resources which is available in the offshore. The search for oil and gas is faced with greater challenges because of the nature of the marine environment as it poses difficult and harsh conditions for the construction of offshore structures. The major problem of the construction of offshore structure is the ability to produce a sound weld that gives the whole structure the structural integrity needed to withstand the harsh environmental conditions. This research work presents the performance of typical offshore steels with improved weldability. The ability of reducing the carbon content of thermo-mechanically rolled steels down to 0.08% makes it possible to achieve good weldability, toughness and strength for high strength steels used in offshore applications. Importantly, the ideal welding procedure should be strictly followed as recommended. The fabrication process is as important as the welding procedure in achieving a sound weld which is free of weld defects such as hydrogen induced cracking, lamellar tearing and solidification cracking. This research work also considers the corrosion as it affects offshore structure and necessary measures to mitigate the problem caused by corrosion.