979 resultados para Stickstoffmonoxid-Synthase
Resumo:
BACKGROUND: Inducible nitric oxide synthase (iNOS) and interleukin 8 (IL-8) are positive in approximately 50% of Helicobacter pylori-related diseases but it is not clear whether oxidative stress is also present in H. pylori asymptomatic humans. Our aim was to study the expression of iNOS, superoxide dismutase, catalase and IL-8 production in H. pylori-infected asymptomatic humans, and to investigate the effect of eradication of H. pylori. MATERIALS AND METHODS: Biopsies of corpus and antrum of asymptomatic H. pylori positive and negative humans served for determination of the gastritis score and H. pylori status; iNOS was measured by reverse transcriptase polymerase chain reaction and immunohistochemistry and superoxide dismutase and catalase by immunohistochemistry. IL-8 in biopsies was assessed by enzyme-linked immunosorbent assay. RESULTS: Immunostaining of iNOS, catalase and superoxide dismutase was significantly associated with H. pylori infection and was localized to inflammatory cells. IL-8 concentrations were greater in the H. pylori positive than H. pylori negative group and decreased after bacterial eradication. A decrease in staining for iNOS and catalase was observed after H. pylori eradication. CONCLUSIONS: INOS and antioxidant enzymes are present in gastric biopsies of asymptomatic H. pylori positive humans. Eradication caused a significant decrease in staining for iNOS and catalase. These results indicate that oxidative stress occurs in asymptomatic patients and can be modulated by H. pylori eradication.
Resumo:
Nitric oxide (NO) has been shown to exert cytotoxic effects on tumor cells. We have reported that EC219 cells, a rat-brain-microvessel-derived endothelial cell line, produced NO through cytokine-inducible NO synthase (iNOS), the induction of which was significantly decreased by (a) soluble factor(s) secreted by DHD/PROb, an invasive sub-clone of a rat colon-carcinoma cell line. In this study, the DHD/PROb cell-derived NO-inhibitory factor was characterized. Northern-blot analysis demonstrated that the induction of iNOS mRNA in cytokine-activated EC219 cells was decreased by PROb-cell-conditioned medium. When DHD/PROb cell supernatant was fractionated by affinity chromatography using Con A-Sepharose or heparin-Sepharose, the NO-inhibitory activity was found only in Con A-unbound or heparin-unbound fractions, respectively, indicating that the PROb-derived inhibitory factor was likely to be a non-glycosylated and non-heparin-binding molecule. Pre-incubation of DHD/PROb-cell supernatant with anti-TGF-beta neutralizing antibody completely blocked the DHD/PROb-derived inhibition of NO production by EC219 cells. Addition of exogenous TGF-beta 1 dose-dependently inhibited NO release by EC219 cells. The presence of active TGF-beta in the DHD/PROb cell supernatant was demonstrated using a growth-inhibition assay. Moreover, heat treatment of medium conditioned by the less invasive DHD/REGb cells, which constitutively secreted very low levels of active TGF-beta, increased both TGF-beta activity and the ability to inhibit NO production in EC219 cells. Thus, DHD/PROb colon-carcinoma cells inhibited NO production in EC219 cells by secreting a factor identical or very similar to TGF-beta.
Resumo:
Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P < 0.001 vs. control) and decreased plasma nitric oxide concentration (10.1 ± 11.1 vs. 29.5 ± 8.0 μM) (P < 0.001 ART vs. control). Addition of melatonin (10(-6) M) to culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P < 0.008 vs. ART + vehicle), and prevented arterial hypertension (104.6 ± 3.4 mmHg, P < 0.003 vs. ART + vehicle). These findings provide proof of principle that modification of culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans.
Resumo:
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.
Resumo:
Many studies indicate a crucial role for the vitamin B12 and folate-dependent enzyme methionine synthase (MS) in brain development and function, but vitamin B12 status in the brain across the lifespan has not been previously investigated. Vitamin B12 (cobalamin, Cbl) exists in multiple forms, including methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), serving as cofactors for MS and methylmalonylCoA mutase, respectively. We measured levels of five Cbl species in postmortem human frontal cortex of 43 control subjects, from 19 weeks of fetal development through 80 years of age, and 12 autistic and 9 schizophrenic subjects. Total Cbl was significantly lower in older control subjects (> 60 yrs of age), primarily reflecting a >10-fold age-dependent decline in the level of MeCbl. Levels of inactive cyanocobalamin (CNCbl) were remarkably higher in fetal brain samples. In both autistic and schizophrenic subjects MeCbl and AdoCbl levels were more than 3-fold lower than age-matched controls. In autistic subjects lower MeCbl was associated with decreased MS activity and elevated levels of its substrate homocysteine (HCY). Low levels of the antioxidant glutathione (GSH) have been linked to both autism and schizophrenia, and both total Cbl and MeCbl levels were decreased in glutamate-cysteine ligase modulatory subunit knockout (GCLM-KO) mice, which exhibit low GSH levels. Thus our findings reveal a previously unrecognized decrease in brain vitamin B12 status across the lifespan that may reflect an adaptation to increasing antioxidant demand, while accelerated deficits due to GSH deficiency may contribute to neurodevelopmental and neuropsychiatric disorders.
Resumo:
The POU4F2/Brn-3b transcription factor has been identified as a potentially novel regulator of key metabolic processes. Loss of this protein in Brn-3b knockout (KO) mice causes profound hyperglycemia and insulin resistance (IR), normally associated with type 2 diabetes (T2D), whereas Brn-3b is reduced in tissues taken from obese mice fed on high-fat diets (HFD), which also develop hyperglycemia and IR. Furthermore, studies in C2C12 myocytes show that Brn-3b mRNA and proteins are induced by glucose but inhibited by insulin, suggesting that this protein is itself highly regulated in responsive cells. Analysis of differential gene expression in skeletal muscle from Brn-3b KO mice showed changes in genes that are implicated in T2D such as increased glycogen synthase kinase-3β and reduced GLUT4 glucose transporter. The GLUT4 gene promoter contains multiple Brn-3b binding sites and is directly transactivated by this transcription factor in cotransfection assays, whereas chromatin immunoprecipitation assays confirm that Brn-3b binds to this promoter in vivo. In addition, correlation between GLUT4 and Brn-3b in KO tissues or in C2C12 cells strongly supports a close association between Brn-3b levels and GLUT4 expression. Since Brn-3b is regulated by metabolites and insulin, this may provide a mechanism for controlling key genes that are required for normal metabolic processes in insulin-responsive tissues and its loss may contribute to abnormal glucose uptake.
Resumo:
We previously reported that A. hydrophila GalU mutants were still able to produce UDP-glucose introduced as a glucose residue in their lipopolysaccharide core. In this study, we found the unique origin of this UDP-glucose from a branched α-glucan surface polysaccharide. This glucan, surface attached through the O-antigen ligase (WaaL), is common to the mesophilic Aeromonas strains tested. The Aeromonas glucan is produced by the action of the glycogen synthase (GlgA) and the UDP-Glc pyrophosphorylase (GlgC), the latter wrongly indicated as an ADP-Glc pyrophosphorylase in the Aeromonas genomes available. The Aeromonas glycogen synthase is able to react with UDP or ADP-glucose, which is not the case of E. coli glycogen synthase only reacting with ADP-glucose. The Aeromonas surface glucan has a role enhancing biofilm formation. Finally, for the first time to our knowledge, a clear preference on behalf of bacterial survival and pathogenesis is observed when choosing to produce one or other surface saccharide molecules to produce (lipopolysaccharide core or glucan).
Resumo:
Acute lung injury (ALI) is a syndrome of acute hypoxemic respiratory failure with bilateral pulmonary infiltrates that is not caused by left atrial hypertension. Since there is no effective treatment available, this frequent clinical syndrome significantly contributes to mortality of both medical and surgical patients. Great majority of the patients with the syndrome suffers from indirect ALI caused by systemic inflammatory response syndrome (SIRS). Sepsis, trauma, major surgery and severe burns, which represent the most common triggers of SIRS, often induce an overwhelming inflammatory reaction leading to dysfunction of several vital organs. Studies of indirect ALI due to SIRS revealed that respiratory dysfunction results from increased permeability of endothelium. Disruption of endothelial barrier allows extravasation of protein-rich liquid and neutrophils to pulmonary parenchyma. Both under normal conditions and in inflammation, endothelial barrier function is regulated by numerous mechanisms. Endothelial enzymes represent one of the critical control points of vascular permeability and leukocyte trafficking. Some endothelial enzymes prevent disruption of endothelial barrier by production of anti-inflammatory substances. For instance, nitric oxide synthase (NOS) down-regulates leukocyte extravasation in inflammation by generation of nitric oxide. CD73 decreases vascular leakage and neutrophil emigration to inflamed tissues by generation of adenosine. On the other hand, vascular adhesion protein-1 (VAP-1) mediates leukocyte trafficking to the sites of inflammation both by generation of pro-inflammatory substances and by physically acting as an adhesion molecule. The aims of this study were to define the role of endothelial enzymes NOS, CD73 and VAP-1 in acute lung injury. Our data suggest that increasing substrate availability for NOS reduces both lung edema and neutrophil infiltration and this effect is not enhanced by concomitant administration of antioxidants. CD73 protects from vascular leakage in ALI and its up-regulation by interferon-β represents a novel therapeutic strategy for treatment of this syndrome. Enzymatic activity of VAP-1 mediates neutrophil infiltration in ALI and its inhibition represents an attractive approach to treat ALI.
Resumo:
Prostaglandins (PG's), produced from arachidonic acid metabolism, are potent mediators of inflammation. Nonsteroidal anti-inflammatory (NSAIDs) exert their effects by inhibition of prostaglandin endoperoxide synthase (PGHS) enzyme, which catalyses the first committed step in arachidonic acid metabolism. Two isoforms of PGHS are known: PGHS-1, constitutively expressed in most tissues, and is responsible for physiological production of PG's. The second isoform, PGHS-2, is induced by cytokines, mitogens and endotoxins in inflammatory cells, and appears to be responsible for the elevated production of PG's during inflammation. With the recent discovery of the inducible PGHS (PGHS-2), the medicinal chemist now possesses a novel target for designing therapeutic agents that could provide suitable anti-inflammatory activity without the ulcerogenic and renal side effects associated with currently available NSAIDs, all of which inhibit both PGHS-1 and PGHS-2.
Resumo:
Increased production of vasoconstrictive prostanoids, such as thromboxane A2 (TXA2 ), contributes to endothelial dysfunction and increased hepatic vascular tone in cirrhosis. TXA2 induces vasoconstriction by way of activation of the thromboxane-A2 /prostaglandin-endoperoxide (TP) receptor. This study investigated whether terutroban, a specific TP receptor blocker, decreases hepatic vascular tone and portal pressure in rats with cirrhosis due to carbon tetrachloride (CCl4 ) or bile duct ligation (BDL). Hepatic and systemic hemodynamics, endothelial dysfunction, liver fibrosis, hepatic Rho-kinase activity (a marker of hepatic stellate cell contraction), and the endothelial nitric oxide synthase (eNOS) signaling pathway were measured in CCl4 and BDL cirrhotic rats treated with terutroban (30 mg/kg/day) or its vehicle for 2 weeks. Terutroban reduced portal pressure in both models without producing significant changes in portal blood flow, suggesting a reduction in hepatic vascular resistance. Terutroban did not significantly change arterial pressure in CCl4 -cirrhotic rats but decreased it significantly in BDL-cirrhotic rats. In livers from CCl4 and BDL-cirrhotic terutroban-treated rats, endothelial dysfunction was improved and Rho-kinase activity was significantly reduced. In CCl4 -cirrhotic rats, terutroban reduced liver fibrosis and decreased alpha smooth muscle actin (α-SMA), collagen-I, and transforming growth factor beta messenger RNA (mRNA) expression without significant changes in the eNOS pathway. In contrast, no change in liver fibrosis was observed in BDL-cirrhotic rats but an increase in the eNOS pathway. CONCLUSION: Our data indicate that TP-receptor blockade with terutroban decreases portal pressure in cirrhosis. This effect is due to decreased hepatic resistance, which in CCl4 -cirrhotic rats was linked to decreased hepatic fibrosis, but not in BDL rats, in which the main mediator appeared to be an enhanced eNOS-dependent vasodilatation, which was not liver-selective, as it was associated with decreased arterial pressure. The potential use of terutroban for portal hypertension requires further investigation.
Resumo:
During the past few years, a considerable number of research articles have been published relating to the structure and function of the major photosynthetic protein complexes, photosystem (PS) I, PSII, cytochrome (Cyt) b6f, and adenosine triphosphate (ATP) synthase. Sequencing of the Arabidopsis thaliana (Arabidopsis) genome together with several high-quality proteomics studies has, however, revealed that the thylakoid membrane network of plant chloroplasts still contains a number of functionally unknown proteins. These proteins may have a role as auxiliary proteins guiding the assembly, maintenance, and turnover of the thylakoid protein complexes, or they may be as yet unknown subunits of the photosynthetic complexes. Novel subunits are most likely to be found in the NAD(P)H dehydrogenase (NDH) complex, the structure and function of which have remained obscure in the absence of detailed crystallographic data, thus making this thylakoid protein complex a particularly interesting target of investigation. In this thesis, several novel thylakoid-associated proteins were identified by proteomics-based methods. The major goal of characterization of the stroma thylakoid associated polysome-nascent chain complexes was to determine the proteins that guide the dynamic life cycle of PSII. In addition, a large protein complex of ≥ 1,000 kDa, residing in the stroma thylakoid, was characterized in greater depth and it was found to be a supercomplex composed of the PSI and NDH complexes. A set of newly identified proteins from Arabidopsis thylakoids was subjected to detailed characterization using the reverse genetics approach and extensive biochemical and biophysical analysis. The role of the novel proteins, either as auxiliary proteins or subunits of the photosynthetic protein complexes, was revealed. Two novel thylakoid lumen proteins, TLP18.3 and AtCYP38, function as auxiliary proteins assisting specific steps of the assembly/repair of PSII. The role of the 10-kDa thylakoid lumen protein PsbR is related to the optimization of oxygen evolution of PSII by assisting the assembly of the PsbP protein. Two integral thylakoid membrane proteins, NDH45 and NDH48, are novel subunits of the chloroplast NDH complex. Finally, the thylakoid lumen immunophilin AtCYP20-2 is suggested to interact with the NDH complex, instead of PSII as was hypothesized earlier.
Resumo:
The synthesis of -5-(D-arabino-1,2,3,4-tetrahydroxybutyl)tetrazole and -2-(D-arabino-1,2,3,4-tetra-acetoxybutyl)-5-methyl-1,3,4-oxadiazole from D-arabinose is described. Attempts at removing the protecting groups of the oxadiazole derivative were unsuccessful, leading to products resulting from the opening of the oxadiazole ring. The unprotected tetrazole derivative was selectively phosphorylated at the primary hydroxyl group with diethylphosphoryl chloride. The resulting 5-[D-arabino-4-(diethylphosphoryloxy)-1,2,3-trihydroxybutyl]tetrazole is a protected form of a potential inhibitor of the enzymes glucose-6-phosphate isomerase and glucosamine synthase.
Resumo:
Niacin (nicotinamide, nicotinic acid) interferes on homeostasis, DNA regulation, signaling and longevity. Nicotinic acid reduces synthesis of lipoproteins-apo-B and increases HDL. Its antilipemic action in liver produces: 1) inhibition of DGAT2, with decreased triacylglycerol synthesis, 2) downregulation of the b-chain of adenosine triphosphate synthase, leading to reduced HDL-apo-A-I catabolism. Nicotinic acid could increase redox potential in vascular endothelium. HM74A receptor activation in macrophages would be responsible for the release of prostaglandins, causing flushing in epidermis. HM74A agonists could assist in identifying antilipemic agents. Extended release niacin in combination with statin appears to protect cardiovascular system of patients with low HDL.
Resumo:
Metastatic bone lesions are commonly associated with prostate cancer affecting approximately 60-80% of the patients. The progression of prostate cancer into an advanced stage is a complex process and its molecular mechanisms are poorly understood. So far, no curative treatment is available for advanced stages of prostate cancer. Bisphosphonates (BPs) are synthetic pyrophosphate analogues, which are used as therapeutics for various metabolic bone diseases because of their ability to inhibit osteoclastic bone resorption. Nitrogen-containing bisphosphonates block the function of osteoclasts by disturbing the vesicular traffic and the mevalonate pathway -related enzymes, for example farnesyl diphosphate synthase, which is involved in post-translational isoprenylation of small GTPases. In addition, the anti-proliferative, anti-invasive and pro-apoptotic effects of nitrogen-containing bisphosphonates on various cancer cell lines have been reported. The aim of this thesis work was to clarify the effects of bisphosphonates on prostate cancer cells, focusing on the mechanisms of adhesion, invasion and migration. Furthermore, the role of the mevalonate pathway and prenylation reactions in invasion and regulation of the cytoskeleton of prostate cancer cells were examined. Finally, the effects of alendronate on cytoskeleton- and actin-related proteins in prostate cancer cells were studied in vitro and in vivo. The results showed that the nitrogen-containing bisphosphonate alendronate inhibited the adhesion of prostate cancer cells to various extracellular matrix proteins and migration and invasion in vitro. Inhibition of invasion and migration was reversed by mevalonate pathway intermediates. The blockage of the prenylation transferases GGTase I and FTase inhibited the invasion, migration and actin organization of prostate cancer cells. The marked decrease of cofilin was observed by the prenylation inhibitors used. Inhibition of GGTase I also disrupted the regulation of focal adhesion kinase and paxillin. In addition, alendronate disrupted the cytoskeletal organization and decreased the level of cofilin in vitro and in vivo. The decrease of the cofilin level by alendronate could be one of the key mechanisms behind the observed inhibition of migration and invasion. Based on the effects of nitrogen-containing bisphosphonates on tumor cell invasion and cytoskeletal organization, they can be suggested to be developed as therapeutics for inhibiting prostate cancer metastasis.
Resumo:
Inorganic pyrophosphatases (PPases) are essential enzymes for every living cell. PPases provide the necessary thermodynamic pull for many biosynthetic reactions by hydrolyzing pyrophosphate. There are two types of PPases: integral membrane-bound and soluble enzymes. The latter type is divided into two non-homologous protein families, I and II. Family I PPases are present in all kingdoms of life, whereas family II PPases are only found in prokaryotes, including archae. Family I PPases, particularly that from Saccharomyces cerevisiae, are among the most extensively characterized phosphoryl transfer enzymes. In the present study, we have solved the structures of wild-type and seven active site variants of S. cerevisiae PPase bound to its natural metal cofactor, magnesium ion. These structures have facilitated derivation of the complete enzyme reaction scheme for PPase, fulfilling structures of all the reaction intermediates. The main focus in this study was on a novel subfamily of family II PPases (CBSPPase) containing a large insert formed by two CBS domains and a DRTGG domain within the catalytic domain. The CBS domain (named after cystathionine beta-synthase in which it was initially identified) usually occurs as tandem pairs with two or four copies in many proteins in all kingdoms of life. The structure formed by a pair of CBS domains is also known as a Bateman domain. CBS domains function as regulatory units, with adenylate ligands as the main effectors. The DRTGG domain (designated based on its most conserved residues) occurs less frequently and only in prokaryotes. Often, the domain co-exists with CBS domains, but its function remains unknown. The key objective of the current study was to explore the structural rearrangements in the CBS domains induced by regulatory adenylate ligands and their functional consequences. Two CBS-PPases were investigated, one from Clostridium perfringens (cpCBS-PPase) containing both CBS and DRTGG domains in its regulatory region and the other from Moorella thermoacetica (mt CBS-PPase) lacking the DRTGG domain. We additionally constructed a separate regulatory region of cpCBS-PPase (cpCBS). Both full-length enzymes and cpCBS formed homodimers. Two structures of the regulatory region of cpCBS-PPase complexed with the inhibitor, AMP, and activator, diadenosine tetraphosphate, were solved. The structures were significantly different, providing information on the structural pathway from bound adenylates to the interface between the regulatory and catalytic parts. To our knowledge, these are the first reported structures of a regulated CBS enzyme, which reveal large conformational changes upon regulator binding. The activator-bound structure was more open, consistent with the different thermostabilities of the activator- and inhibitor-bound forms of cpCBS-PPase. The results of the functional studies on wild-type and variant CBS-PPases provide support for inferences made on the basis of structural analyses. Moreover, these findings indicate that CBS-PPase activity is highly sensitive to adenine nucleotide distribution between AMP, ADP and ATP, and hence to the energy level of the cell. CBS-PPase activity is markedly inhibited at low energy levels, allowing PPi energy to be used for cell survival instead of being converted into heat.