977 resultados para Stevin, Simon, 1548-1620.
Resumo:
In phylogenetics, the unrooted model of phylogeny and the strict molecular clock model are two extremes of a continuum. Despite their dominance in phylogenetic inference, it is evident that both are biologically unrealistic and that the real evolutionary process lies between these two extremes. Fortunately, intermediate models employing relaxed molecular clocks have been described. These models open the gate to a new field of “relaxed phylogenetics.” Here we introduce a new approach to performing relaxed phylogenetic analysis. We describe how it can be used to estimate phylogenies and divergence times in the face of uncertainty in evolutionary rates and calibration times. Our approach also provides a means for measuring the clocklikeness of datasets and comparing this measure between different genes and phylogenies. We find no significant rate autocorrelation among branches in three large datasets, suggesting that autocorrelated models are not necessarily suitable for these data. In addition, we place these datasets on the continuum of clocklikeness between a strict molecular clock and the alternative unrooted extreme. Finally, we present analyses of 102 bacterial, 106 yeast, 61 plant, 99 metazoan, and 500 primate alignments. From these we conclude that our method is phylogenetically more accurate and precise than the traditional unrooted model while adding the ability to infer a timescale to evolution.
Resumo:
Long-term changes in the genetic composition of a population occur by the fixation of new mutations, a process known as substitution. The rate at which mutations arise in a population and the rate at which they are fixed are expected to be equal under neutral conditions (Kimura, 1968). Between the appearance of a new mutation and its eventual fate of fixation or loss, there will be a period in which it exists as a transient polymorphism in the population (Kimura and Ohta, 1971). If the majority of mutations are deleterious (and nonlethal), the fixation probabilities of these transient polymorphisms are reduced and the mutation rate will exceed the substitution rate (Kimura, 1983). Consequently, different apparent rates may be observed on different time scales of the molecular evolutionary process (Penny, 2005; Penny and Holmes, 2001). The substitution rate of the mitochondrial protein-coding genes of birds and mammals has been traditionally recognized to be about 0.01 substitutions/site/million years (Myr) (Brown et al., 1979; Ho, 2007; Irwin et al., 1991; Shields and Wilson, 1987), with the noncoding D-loop evolving several times more quickly (e.g., Pesole et al., 1992; Quinn, 1992). Over the past decade, there has been mounting evidence that instantaneous mutation rates substantially exceed substitution rates, in a range of organisms (e.g., Denver et al., 2000; Howell et al., 2003; Lambert et al., 2002; Mao et al., 2006; Mumm et al., 1997; Parsons et al., 1997; Santos et al., 2005). The immediate reaction to the first of these findings was that the polymorphisms generated by the elevated mutation rate are short-lived, perhaps extending back only a few hundred years (Gibbons, 1998; Macaulay et al., 1997). That is, purifying selection was thought to remove these polymorphisms very rapidly.
Resumo:
The estimation of phylogenetic divergence times from sequence data is an important component of many molecular evolutionary studies. There is now a general appreciation that the procedure of divergence dating is considerably more complex than that initially described in the 1960s by Zuckerkandl and Pauling (1962, 1965). In particular, there has been much critical attention toward the assumption of a global molecular clock, resulting in the development of increasingly sophisticated techniques for inferring divergence times from sequence data. In response to the documentation of widespread departures from clocklike behavior, a variety of local- and relaxed-clock methods have been proposed and implemented. Local-clock methods permit different molecular clocks in different parts of the phylogenetic tree, thereby retaining the advantages of the classical molecular clock while casting off the restrictive assumption of a single, global rate of substitution (Rambaut and Bromham 1998; Yoder and Yang 2000).
Resumo:
Advances in safety research—trying to improve the collective understanding of motor vehicle crash causes and contributing factors—rest upon the pursuit of numerous lines of research inquiry. The research community has focused considerable attention on analytical methods development (negative binomial models, simultaneous equations, etc.), on better experimental designs (before-after studies, comparison sites, etc.), on improving exposure measures, and on model specification improvements (additive terms, non-linear relations, etc.). One might logically seek to know which lines of inquiry might provide the most significant improvements in understanding crash causation and/or prediction. It is the contention of this paper that the exclusion of important variables (causal or surrogate measures of causal variables) cause omitted variable bias in model estimation and is an important and neglected line of inquiry in safety research. In particular, spatially related variables are often difficult to collect and omitted from crash models—but offer significant opportunities to better understand contributing factors and/or causes of crashes. This study examines the role of important variables (other than Average Annual Daily Traffic (AADT)) that are generally omitted from intersection crash prediction models. In addition to the geometric and traffic regulatory information of intersection, the proposed model includes many spatial factors such as local influences of weather, sun glare, proximity to drinking establishments, and proximity to schools—representing a mix of potential environmental and human factors that are theoretically important, but rarely used. Results suggest that these variables in addition to AADT have significant explanatory power, and their exclusion leads to omitted variable bias. Provided is evidence that variable exclusion overstates the effect of minor road AADT by as much as 40% and major road AADT by 14%.
Resumo:
The time consuming and labour intensive task of identifying individuals in surveillance video is often challenged by poor resolution and the sheer volume of stored video. Faces or identifying marks such as tattoos are often too coarse for direct matching by machine or human vision. Object tracking and super-resolution can then be combined to facilitate the automated detection and enhancement of areas of interest. The object tracking process enables the automatic detection of people of interest, greatly reducing the amount of data for super-resolution. Smaller regions such as faces can also be tracked. A number of instances of such regions can then be utilized to obtain a super-resolved version for matching. Performance improvement from super-resolution is demonstrated using a face verification task. It is shown that there is a consistent improvement of approximately 7% in verification accuracy, using both Eigenface and Elastic Bunch Graph Matching approaches for automatic face verification, starting from faces with an eye to eye distance of 14 pixels. Visual improvement in image fidelity from super-resolved images over low-resolution and interpolated images is demonstrated on a small database. Current research and future directions in this area are also summarized.
Resumo:
In a commercial environment, it is advantageous to know how long it takes customers to move between different regions, how long they spend in each region, and where they are likely to go as they move from one location to another. Presently, these measures can only be determined manually, or through the use of hardware tags (i.e. RFID). Soft biometrics are characteristics that can be used to describe, but not uniquely identify an individual. They include traits such as height, weight, gender, hair, skin and clothing colour. Unlike traditional biometrics, soft biometrics can be acquired by surveillance cameras at range without any user cooperation. While these traits cannot provide robust authentication, they can be used to provide identification at long range, and aid in object tracking and detection in disjoint camera networks. In this chapter we propose using colour, height and luggage soft biometrics to determine operational statistics relating to how people move through a space. A novel average soft biometric is used to locate people who look distinct, and these people are then detected at various locations within a disjoint camera network to gradually obtain operational statistics
Resumo:
Modelling activities in crowded scenes is very challenging as object tracking is not robust in complicated scenes and optical flow does not capture long range motion. We propose a novel approach to analyse activities in crowded scenes using a “bag of particle trajectories”. Particle trajectories are extracted from foreground regions within short video clips using particle video, which estimates long range motion in contrast to optical flow which is only concerned with inter-frame motion. Our applications include temporal video segmentation and anomaly detection, and we perform our evaluation on several real-world datasets containing complicated scenes. We show that our approaches achieve state-of-the-art performance for both tasks.
Resumo:
The ability to detect unusual events in surviellance footage as they happen is a highly desireable feature for a surveillance system. However, this problem remains challenging in crowded scenes due to occlusions and the clustering of people. In this paper, we propose using the Distributed Behavior Model (DBM), which has been widely used in computer graphics, for video event detection. Our approach does not rely on object tracking, and is robust to camera movements. We use sparse coding for classification, and test our approach on various datasets. Our proposed approach outperforms a state-of-the-art work which uses the social force model and Latent Dirichlet Allocation.
Resumo:
An extended theory of planned behavior (TPB) was used to predict young people’s intentions to donate money to charities in the future. Students (N = 210; 18-24 years) completed a questionnaire assessing their attitude, subjective norm, perceived behavioral control [PBC], moral obligation, past behavior and intentions toward donating money. Regression analyses revealed the extended TPB explained 61% of the variance in intentions to donate money. Attitude, PBC, moral norm, and past behavior predicted intentions, representing future targets for charitable giving interventions.
Resumo:
Introduction: Previous studies investigating mothers’ sleep in the postpartum period commonly demonstrated elevated levels of sleepiness in this population. A Karolinska Sleepiness Scale (KSS) rating of 5 or above is associated with an exponential increase in vehicle crash risk. To date, no studies have investigated the relationship between mothers’ sleep in the postpartum period and their driving behaviour. Methods: Sleep-wake diary data was collected from 14 mother-infant dyads during two 7-day assessment periods when the infants were 6 and 12 weeks old. The mothers’ indicated all driving episodes during these weeks and their respective sleepiness level using the KSS. Semi-structured interviews were conducted with the mothers when their infant was 12 weeks old. Results: The infants slept significantly more than their mothers at 6 weeks and 12 weeks of age. During both time points, mothers and infants had a similar number of night awakenings (waking between 22:00 and 06:00), with some mothers experiencing greater than 19 awakenings over 7 nights. Notably, 36% of the mothers did not experience a continuous sleep period longer than 4.5 hours when their infant was 6 weeks old. A total of 141 driving episodes were reported during the 7 day assessment period when the infants were 6 weeks old. Over 50% of the driving episodes were denoted with a KSS score of 5 or above. Strategies mothers cited they employed during this period included only driving when feeling alert, postponing driving until another person is present, and driving in the morning when less sleepy. Conclusion: Mothers are experiencing disrupted sleep at night and some mothers do not obtain more than 4.5 hours of continuous sleep during the early postpartum weeks. In this sample, some mothers reported self-regulating driving behaviour, however over half of the driving episodes were undertaken with a sleepiness rating linked with elevated crash risk.
Resumo:
Distraction whilst driving on an approach to a signalized intersection is particularly dangerous, as potential vehicular conflicts and resulting angle collisions tend to be severe. This study examines the decisions of distracted drivers during the onset of amber lights. Driving simulator data were obtained from a sample of 58 drivers under baseline and handheld mobile phone conditions at the University of IOWA - National Advanced Driving Simulator. Explanatory variables include age, gender, cell phone use, distance to stop-line, and speed. An iterative combination of decision tree and logistic regression analyses are employed to identify main effects, non-linearities, and interactions effects. Results show that novice (16-17 years) and younger (18-25 years) drivers’ had heightened amber light running risk while distracted by cell phone, and speed and distance thresholds yielded significant interaction effects. Driver experience captured by age has a multiplicative effect with distraction, making the combined effect of being inexperienced and distracted particularly risky. Solutions are needed to combat the use of mobile phones whilst driving.
Resumo:
An array of substrates link the tryptic serine protease, kallikrein-related peptidase 14 (KLK14), to physiological functions including desquamation and activation of signaling molecules associated with inflammation and cancer. Recognition of protease cleavage sequences is driven by complementarity between exposed substrate motifs and the physicochemical signature of an enzyme's active site cleft. However, conventional substrate screening methods have generated conflicting subsite profiles for KLK14. This study utilizes a recently developed screening technique, the sparse matrix library, to identify five novel high-efficiency sequences for KLK14. The optimal sequence, YASR, was cleaved with higher efficiency (k(cat)/K(m)=3.81 ± 0.4 × 10(6) M(-1) s(-1)) than favored substrates from positional scanning and phage display by 2- and 10-fold, respectively. Binding site cooperativity was prominent among preferred sequences, which enabled optimal interaction at all subsites as indicated by predictive modeling of KLK14/substrate complexes. These simulations constitute the first molecular dynamics analysis of KLK14 and offer a structural rationale for the divergent subsite preferences evident between KLK14 and closely related KLKs, KLK4 and KLK5. Collectively, these findings highlight the importance of binding site cooperativity in protease substrate recognition, which has implications for discovery of optimal substrates and engineering highly effective protease inhibitors.
In the pursuit of effective affective computing : the relationship between features and registration
Resumo:
For facial expression recognition systems to be applicable in the real world, they need to be able to detect and track a previously unseen person's face and its facial movements accurately in realistic environments. A highly plausible solution involves performing a "dense" form of alignment, where 60-70 fiducial facial points are tracked with high accuracy. The problem is that, in practice, this type of dense alignment had so far been impossible to achieve in a generic sense, mainly due to poor reliability and robustness. Instead, many expression detection methods have opted for a "coarse" form of face alignment, followed by an application of a biologically inspired appearance descriptor such as the histogram of oriented gradients or Gabor magnitudes. Encouragingly, recent advances to a number of dense alignment algorithms have demonstrated both high reliability and accuracy for unseen subjects [e.g., constrained local models (CLMs)]. This begs the question: Aside from countering against illumination variation, what do these appearance descriptors do that standard pixel representations do not? In this paper, we show that, when close to perfect alignment is obtained, there is no real benefit in employing these different appearance-based representations (under consistent illumination conditions). In fact, when misalignment does occur, we show that these appearance descriptors do work well by encoding robustness to alignment error. For this work, we compared two popular methods for dense alignment-subject-dependent active appearance models versus subject-independent CLMs-on the task of action-unit detection. These comparisons were conducted through a battery of experiments across various publicly available data sets (i.e., CK+, Pain, M3, and GEMEP-FERA). We also report our performance in the recent 2011 Facial Expression Recognition and Analysis Challenge for the subject-independent task.