972 resultados para Steryl esters


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of organic molecules as catalysts for the ring-opening polymerization (ROP) of cyclic esters has gained much interest last years.[1] The use of a molecule of biological interest, able to initiate ROP of cyclic esters without any cocatalyst is even more interesting, as the resulting material will not contain any catalytic residue. Nucleobase-polymer conjugates development is thus an emerging area envisaging biomedical applications.[2] However, they are usually synthesized by tedious multistep procedures. Recently, adenine was used as organoinitiator for the ROP of L-lactide.[3] Reaction conditions involving short reaction times and relatively low temperatures enable the access to adenine-polylactide(Adn-PLA)conjugates in a simple one-step procedure, without additional catalyst and in the absence of solvent. In this study, computational investigations with density functional theory (DFT) were performed in order to clarify the reaction mechanism leading to the desired Adn-PLA. The results show that a hydrogen bond catalytic mechanism, involving a nucleophilic attack of the activated amine group of adenine onto the carbonyl group of lactide, seem to be plausible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiesel production from waste cooking oil with methanol was carried out in the presence of poly(vinyl alcohol) with sulfonic acid groups (PVA-SO3H) and polystyrene with sulfonic acid groups (PS-SO3H), at 60°C. The PVA-SO3H catalyst showed higher catalytic activity than the PS-SO3H one. In order to optimize the reaction conditions, different parameters were studied. An increase of waste cooking oil conversion into fatty acid methyl esters with the amount of PVA-SO3H was observed. When the transesterification and esterification of WCO was carried out with ethanol over PVA-SO3H, at 60°C, a decrease of biodiesel production was also observed. The WCO conversion into fatty acid ethyl ester increased when the temperature was increased from 60 to 80°C. When different amounts of free fatty acids were added to the reaction mixture, a slight increase on the conversion was observed. The PVASO3H catalyst was reused and recycled with negligible loss in the activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of fine wines in the Sub-middle of the São Francisco River Valley, Northeast of Brazil, is relatively recent, about twenty-five years ago. This region presents different characteristics, with a tropical semiarid climate, in a flat landscape. Presenting high annual average temperature, solar radiation and water in abundance for irrigation, it?s possible the scaling the grape harvests for winemaking throughout the year, allowing to obtain until two harvests per year. Several factors may affect the aromatic compounds in wines, such as viticulture practices, climatic conditions, cultivars and winemaking process. This study aimed to evaluate the aromatic stability of Syrah and Petit Verdot tropical wines elaborated in two different periods in the year. The grapes were harvested in the first and second semesters of 2009, in June and November. The wines were elaborated and then, they were bottled and analyzed in triplicate, thirty days and one year after bottling, by gas chromatography with ionization detector flame (GC-FID), to evaluate the profile and the stability of the aroma compounds. Principal component analysis was applied to discriminate between wine samples and to find the compounds responsible by the variability. The results showed that Syrah and Petit Verdot tropical wines presented different responses, for stability of higher alcohols, esters and carboxylic acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional winegrowing areas are located in temperate climate zones and allow to produce grapes only once per year. Tropical wines have been elaborated in India, Thailand, Venezuela and Brazil and present another kind of viticulture, as compared with countries located in temperate climate zones. Northeast of Brazil started wine production twenty six years ago. This region vines can produce two or three crops per year, depending of the cycle of different cultivars. Harvests can be scaled throughout the year, mainly between May and December, corresponding to the dry season. Red, white, rosé and sparkling wines are being elaborated in the region. The objective of this work was to determine the physico-chemical and aromatic characteristics of some tropical wines elaborated in Northeast of Brazil, with grapes harvested in November 2008. Wines were elaborated using traditional method with control of the alcoholic and malolactic fermentation temperatures, at 25 and 18ºC for red wines, respectively, and at 18ºC for alcoholic fermentation of the white wines. After stabilization and bottling and wines were analyzed to determine physico-chemical characteristics, like alcohol degree, pH, total and volatile acidities, dry extract, sulfur dioxide, total anthocyanin and total phenol index. Aromatic profile was determined by gas chromatography, while 19 esters and 6 superior alcohols were identified. Wines presented different chemical and aromatic characteristics according to different grape cultivars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wine aroma is an important characteristic and may be related to certain specific parameters, such as raw material and production process. The complexity of Merlot wine aroma was considered suitable for comprehensive two-dimensional gas chromatography (GCGC), as this technique offers superior performance when compared to one-dimensional gas chromatography (1D-GC). The profile of volatile compounds of Merlot wine was, for the first time, qualitatively analyzed by HS-SPME-GCxGC with a time-of-flight mass spectrometric detector (TOFMS), resulting in 179 compounds tentatively identified by comparison of experimental GCxGC retention indices and mass spectra with literature 1D-GC data and 155 compounds tentatively identified only by mass spectra comparison. A set of GCGC experimental retention indices was also, for the first time, presented for a specific inverse set of columns. Esters were present in higher number (94), followed by alcohols (80), ketones (29), acids (29), aldehydes (23), terpenes (23), lactones (16), furans (14), sulfur compounds (9), phenols (7), pyrroles (5), C13-norisoprenoids (3), and pyrans (2). GCxGC/TOFMS parameters were improved and optimal conditions were: a polar (polyethylene glycol)/medium polar (50% phenyl 50% dimethyl arylene siloxane) column set, oven temperature offset of 10ºC, 7 s as modulation period and 1.4 s of hot pulse duration. Co-elutions came up to 138 compounds in 1D and some of them were resolved in 2D. Among the coeluted compounds, thirty-three volatiles co-eluted in both 1D and 2D and their tentative identification was possible only due to spectral deconvolution. Some compounds that might have important contribution to aroma notes were included in these superimposed peaks. Structurally organized distribution of compounds in the 2D space was observed for esters, aldehydes and ketones, alcohols, thiols, lactones, acids and also inside subgroups, as occurred with esters and alcohols. The Fischer Ratio was useful for establishing the analytes responsible for the main differences between Merlot and non-Merlot wines. Differentiation among Merlot wines and wines of other grape varieties were mainly perceived through the following components: ethyl dodecanoate, 1-hexanol, ethyl nonanoate, ethyl hexanoate, ethyl decanoate, dehydro-2-methyl-3(2H)thiophenone, 3-methyl butanoic acid, ethyl tetradecanoate, methyl octanoate, 1,4 butanediol, and 6-methyloctan-1-ol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Section 1 is focused on the bis-alkoxycarbonylation reaction of olefins, catalyzed by aryl α-diimine/Pd(II) complexes, for the synthesis of succinic acid ester derivatives, important compounds in many industrial fields. The opening chapter (Chapter 1) of this thesis presents an overview of the basic chemistry of organopalladium compounds and carbonylation reactions, focusing on oxidative bis-alkoxycarbonylation processes. In Chapter 2 the results obtained in the bis-alkoxycarbonylation of 1,2-disubstituted olefins are reported. The reaction proceeds under very mild reaction conditions, using an aryl α-diimine/Pd(II) catalyst and p-benzoquinone as oxidant, in the presence of a suitable alcohol. This process proved to be very efficient, selective and diastereospecific and various 2,3-disubstituted succinic esters have been obtained in high yields. In Chapter 3 the first bis-alkoxycarbonylation reaction of acrylic esters and acrylic amides, leading to the synthesis of 2-alkoxycarbonyl and 2-carbamoyl succinates respectively, is reported. Remarkably, the utilized aryl α-diimine/Pd(II) catalyst is able to promote the carbonylation of both the β- and the generally non-reactive α- positions of these alkenes. The proposed catalytic cycle is supported by DFT calculations. Section 2 is mainly focused on the Ni-catalyzed difunctionalization of unactivated alkenes tethered to unstabilized ketones. This reaction allows for a wide range of pharmaceutically useful cyclic architectures to be obtained. Chapter 4 consists of an introduction to the difunctionalization reactions of unactivated olefins. In particular, intramolecular reactions will be discussed in detail. In Chapter 5 the results obtained from the Ni-catalyzed difunctionalization of unactivated alkenes tethered to unstabilized ketones are reported. The reaction proceeds through the formation of a zinc-enolate compound, followed by a cyclization/cross-coupling reaction, which takes place in the presence of a phosphine/Ni(II) complex and an (hetero)aryl electrophile, leading to different cyclic and bicyilc architectures. In Chapter 6, preliminary results concerning the anionic cyclization of zinc enolates tethered to unactivated alkenes are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Ph.D. project aimed to the development and improvement of analytical solutions for control of quality and authenticity of virgin olive oils. According to this main objective, different research activities were carried out: concerning the quality control of olive oil, two of the official parameters defined by regulations (free acidity and fatty acid ethyl esters) were taken into account, and more sustainable and easier analytical solutions were developed and validated in-house. Regarding authenticity, two different issues were faced: verification of the geographical origin of extra virgin (EVOOs) and virgin olive oils (VOOs), and assessment of soft-deodorized oils illegally mixed with EVOOs. About fatty acid ethyl esters, a revised method based on the application of off-line HPLC-GC-FID (with PTV injector), revising both the preparative phase and the GC injector required in the official method, was developed. Next, the method was in-house validated evaluating several parameters. Concerning free acidity, a portable system suitable for in-situ measurements of VOO free acidity was developed and in-house validated. Its working principle is based on the estimation of the olive oil free acidity by measuring the conductance of an emulsion between a hydro-alcoholic solution and the sample to be tested. The procedure is very quick and easy and, therefore, suitable for people without specific training. Another study developed during the Ph.D. was about the application of flash gas chromatography for volatile compounds analysis, combined with untargeted chemometric data elaborations, for discrimination of EVOOs and VOOs of different geographical origin. A set of 210 samples coming from different EU member states and extra-EU countries were collected and analyzed. Data were elaborated applying two different classification techniques, one linear (PLS-DA) and one non-linear (ANN). Finally, a preliminary study about the application of GC-IMS (Gas Chromatograph - Ion Mobility Spectrometer) for assessment of soft-deodorized olive oils was carried out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work mainly arises from the necessity to support the rapid introduction of different biobased polymers that the industrial sector has been facing lately. Indeed, while considerable efforts are being made to find environmentally and economically sustainable materials, less attention is paid to their need to be properly compounded to fulfil increasingly rigorous technical and quality requirements. Therefore, there is a strong demand for the development of a novel generation of compatible additives able to improve the properties of biobased polymers while respecting sustainability. With this in mind, a new class of biobased plasticizers is herein proposed. Five different ketal-diesters were selectively synthesized starting from levulinic acid, a promising renewable chemical platform. These molecules were added to poly(vinyl chloride) as model polymer to test their plasticizing effectiveness. Complete morphological, thermal and viscoelastic characterizations showed a clear correlation between the structural features of the ketal-esters and the properties of the material. In addition, no significant leaching was found in both hydrophilic and lipophilic environments. Importantly, the proposed ketal-diesters performed comparably and, in some cases, even better than commercial plasticizers. The same molecules were then added to bacterial poly(3-hydroxybutyrate), a semicrystalline polyester characterized by poor thermal and mechanical properties. Morphology assessments showed no phase separation and the plasticizing effectiveness was confirmed by thermal and viscoelastic analyses, while leaching tests showed low extraction values. Readily usable fractions with controlled structure and tailored properties were obtained from highly heterogeneous industrial grade Kraft lignin. These fractions were then added to poly(vinyl alcohol). Promising preliminary results in terms of compatibility were achieved, with thermograms showing only one glass transition temperature. Finally, a fully biobased glycerol-trilevulinate was successfully synthesized by means of a mild and solvent-free route. Its plasticizing effectiveness was evaluated on poly(vinyl chloride), showing a significant decrease of the glass transition temperature of the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Levulinic acid (LA) is a polyfunctional molecule obtained from biomass. Because of its structure, the United States Department of energy classified LA as one of the top 12 building block chemicals. Typically, it is valorized through chemical reduction to γ-valerolactone (GVL). It is usually done with H2 in batch systems with high H2 pressures and noble metal catalysts, making it expensive and less applicable. Therefore, alternative approaches such as catalytic transfer hydrogenation (CTH) through the Meerwein–Ponndorf–Verley (MPV) reaction over heterogeneous catalysts have been studied. This uses organic molecules (alcohols) which act as a hydride transfer agent (H-donor), to reduce molecules containing carbonyl groups. Given the stability of the intermediate, reports have shown the batch liquid-phase CTH of levulinate esters with secondary alcohols, and remarkable results (GVL yield) have been obtained over ZrO2, given the need of a Lewis acid (LASites) and base pair for CTH. However, there were no reports of the continuous gas-phase CTH of levulinate esters. Therefore, high surface area ZrO2 was tested for gas-phase CTH of methyl levulinate (ML) using ethanol, methanol and isopropanol as H-donors. Under optimized conditions with ethanol (250 ℃), the reaction is selective towards GVL (yield 70%). However, heavy carbonaceous materials over the catalyst surface progressively blocked LASites changing the chemoselectivity. The in situ regeneration of the catalyst permitted a partial recovery of the LASites and an almost total recovery of the initial catalytic behavior, proving the deactivation reversible. Tests with methanol were not promising (ML conversion 35%, GVL yield 4%). As expected, using isopropanol provided complete conversion and a GVL yield of 80%. The reaction was also tested using bioethanol derived from agricultural waste. In addition, a preliminary study was performed for the hydrogenolysis of polyols to produce bioethanol, were Pd-Fe catalyst promoted the ethanol selective (37%) hydrogenolysis of glycerol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pathogenic fungi are responsible for vine diseases affecting the grapevine yield and the organoleptic quality of the final wine products. Using of biocontrol agents can represent a sustainable alternative to the use of synthetic fungicides whose intense use can have negative effects on the ecosystem and cause increase resistant pathogen population to synthetic agents. The principal aim of my PhD thesis was the isolation and characterization of new yeast strains and Bacillus subtilis SV108 as biocontrol agent and the comprehension of the mechanism of their antimicrobial action. Accordingly, twenty wild yeast and one selected bacterium isolated among 62 samples, isolated from different Italian and Malaysian regions and molecularly identified, were evaluated in a preliminary screening test on agar. Results showed the highest effects on inhibiting mycelial growth by Starmerella bacillaris FE08.05, Metschnikowia pulcherrima GP8 and Hanseniaspora uvarum GM19. On the other side, Bacillus subtilis SV108 showed the ability of inhibit the mycelial growth of selected fungi by producing antimicrobial compounds on Malt Extract Broth medium recovered by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and identified by electrospray ionization (ESI) tandem mass spectrometer Triple TOF 5600. Moreover, in order to analyze the volatile fraction of compounds, the quantitative analysis of the VOCs profiles was performed by GC/MS/SPME. The analysis highlighted the presence of isoamyl and phenylethyl alcohols and an overall higher presence of low-chain fatty acids and volatile ethyl esters. All the data collected suggest that the tested yeasts, found among the epiphytic microbiota associated with grape berries, can be potentially effective for the biological control of pathogenic moulds. On the other hand, the proteomic study conducted on B. subtilis SV108 revealed that there are two cyclic antifungal peptides which can explain the antimicrobial effect of Bacillus subtilis SV108 acting as biocontrol agent against fungal pathogens in grapevine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Levulinic Acid and its esters are polyfunctional molecules obtained by biomass conversion. The most investigated strategy for the valorization of LA is its hydrogenation towards fuel additives, solvents and other added-value bio-based chemicals and, in this context, heterogeneous and homogeneous catalysts are widely used. Most commonly, it is typically performed with molecular hydrogen (H2) in batch systems, with high H2 pressures and noble metal catalysts. Several works reported the batch liquid-phase hydrogenation of LA and its esters by heterogenous catalysts which contained support with Brønsted acidity in order to obtain valeric acid and its esters. Furthermore, bimetallic and monometallic systems composed by both a metal for hydrogen activation and a promoter were demonstrated to be suitable catalysts for reduction of carboxylic group. However, there were no studies in the literature reporting the hydrogenation of alkyl levulinates to 1-pentanol (1-PAO). Therefore, bimetallic and monometallic catalysts were tested for one-pot hydrogenation of methyl levulinate to 1-PAO. Re-based catalysts were investigated, this way proving the crucial role of the support for promoting the ring-opening of GVL and its consecutive reduction to valeric compounds. All the reactions were performed in neat without the need of any additional solvents. In these conditions, bimetallic Re-Ru-O/HZSM-5 afforded methyl valerate and valeric acid (VA) with a productivity of 512 mmol gmetal-1 h-1, one of the highest reported in literature to date. Rhenium can also promote the reduction of valeric acid/esters to PV through the formation of 1-pentanol and its efficient esterification/transesterification with the starting material. However, it was proved that Re-based catalysts may undergo leaching of active phase in presence of carboxylic acids, especially by working in neat with VA. Furthermore, the over-reduction of rhenium affects catalytic performance, suggesting not only that a pre-reduction step is unnecessary but also that it could be detrimental for catalyst’s activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal microtubules assembly and dynamics are regulated by several proteins including (MT)-associated protein tau, whose aberrant hyperphosphorylation promotes its dissociation from MTs and its abnormal deposition into neurofibrillary tangles, a common neurotoxic hallmarks of neurodegenerative tauopathies. To date, no disease-modifying drugs have been approved to combat CNS tau-related diseases. The multifactorial etiology of these conditions represents one of the major limits in the discovery of effective therapeutic options. In addition, tau protein functions are orchestrated by diverse post-translational modifications among which phosphorylation mediated by PKs plays a leading role. In this context, conventional single-target therapies are often inadequate in restoring perturbed networks and fraught with adverse side-effects. This thesis reports two distinct approaches to hijack MT defects in neurons. The first is focused on the rational design and synthesis of first-in-class triple inhibitors of GSK-3β, FYN, and DYRK1A, three close-related PKs, which act as master regulators of aberrant tau hyperphosphorylation. A merged multi-target pharmacophore strategy was applied to simultaneously modulate all three targets and achieve a disease-modifying effect. Optimization of ARN25068 by a computationally and crystallographic driven SAR exploration, allowed to rationalize the key structural modifications to maintain a balanced potency against all three targets and develop a new generation of quite well-balanced analogs exhibiting improved physicochemical properties, a good in vitro ADME profile, and promising cell-based anti-tau phosphorylation activity. In Part II, MT-stabilizing compounds have been developed to compensate MT defects in tau-related pathologies. Intensive chemical effort has been devoted to scaling up BL-0884, identified as a promising MT-normalizing TPD, which exhibited favorable ADME-PK, including brain penetration, oral bioavailability, and brain pharmacodynamic activity. A suitable functionalization of the exposed hydroxyl moiety of BL-0884 was carried out to generate corresponding esters and amides possessing a wide range of applications as prodrugs and active targeting for cancer chemotherapy.