995 resultados para Stable carbon
Resumo:
Climate conditions in the westernmost Mediterranean (Alboran Sea basin) over the last two millennia have been reconstructed through integration of molecular proxies applied for the first time in this region at such high resolution. Two temperature proxies, one based on isoprenoid membrane lipids of marine Thaumarchaeota (TEXH86-tetraether index of compounds consisting of 86 carbons) and the other on alkenones produced by haptophytes (UK'37 ratio) were applied to reconstruct sea surface temperature (SST). Both records reveal a progressive long term decline in SST over the last two millennia and an increased rate of warming during the second half of the twentieth century. This is in accord with previous temperature reconstructions for the Northern Hemisphere. TEXH86 temperature values are higher than those inferred from UK'37, probably due to differences in the bloom season of haptophytes and Thaumarchaeota, and reflect summer SST. The branched vs. isoprenoid tetraether index (BIT index) suggests a low contribution of soil organic matter (OM) to the sedimentary OM. The stable carbon isotopic composition of long chain n-alkanes indicates a predominant C3 plant contribution, with no major change in vegetation over the last 2000 yr. The distribution of long chain 1,14-diols (most likely sourced by Proboscia species in this setting) provided insight into variation in upwelling conditions during the last 2000 yr and depicts a correlation with the North Atlantic Oscillation (NAO) index, providing evidence of enhanced wind induced upwelling during periods of a persistent positive mode of the NAO.
Resumo:
Alkenone-based Cenozoic records of the partial pressure of atmospheric carbon dioxide (pCO2) are founded on the carbon isotope fractionation that occurred during marine photosynthesis (epsilon [p37:2]). However, the magnitude of epsilon [p37:2] is also influenced by phytoplankton cell size - a consideration lacking in previous alkenone-based CO2 estimates. In this study, we reconstruct cell size trends in ancient alkenone-producing coccolithophores (the reticulofenestrids) to test the influence that cell size variability played in determining epsilon [p37:2] trends and pCO2 estimates during the middle Eocene to early Miocene. At the investigated deep-sea sites, the reticulofenestrids experienced high diversity and largest mean cell sizes during the late Eocene, followed by a long-term decrease in maximum cell size since the earliest Oligocene. Decreasing haptophyte cell sizes do not account for the long-term increase in the stable carbon isotopic composition of alkenones and associated decrease in epsilon [p37:2] values during the Paleogene, supporting the conclusion that the secular pattern of epsilon [p37:2] values is primarily controlled by decreasing CO2 concentration since the earliest Oligocene. Further, given the physiology of modern alkenone producers, and considering the timings of coccolithophorid cell size change, extinctions, and changes in reconstructed pCO2 and temperature, we speculate that the selection of smaller reticulofenestrid cells during the Oligocene primarily reflects an adaptive response to increased [CO2(aq)] limitation.
Resumo:
Here, the pelagic carbonate system and the ?13C signature of dissolved inorganic carbonate (DIC) were investigated in a tidal basin of the southern North Sea, the Jade Bay, with respect to tidal cycles and a transect towards the North Sea in winter time (January and November, 2010). Physical parameters, major and trace elements, and nutrient concentrations were considered, too. Primary production and pelagic organic matter respiration were negligible during winter time. Both, the compositional variations on the transects as well as during the tidal cycles indicate the mixing of North Sea with fresh water. The combined spatial co-variations of different parameters indicate an introduction of fresh water that was enriched in DI12C, metabolites (e.g., ammonia), protons, and dissolved redox-sensitive elements (e.g., Mn2+). During the January campaign, the discharge via the flood gates was limited due to ice cover of the hinterland drainage ditches, allowing for an observation of tidal variations without significant mixing contributions from surface water discharges. Considering a binary mixing model with North Sea and fresh water as end-members, the extrapolated fresh water end-member composition for this campaign is estimated to contain about 3.8 mmol/kg DIC , and enhanced concentrations of NH4+, Mn2+, and protons compared to North Sea water. The fast temporal response of dissolved geochemical tracers on tidal variations in the Jade Bay indicates a continuous supply of a fresh water component. The measured composition of fresh waters entering the Jade Bay via flood gates (end of October, 2010) did not match the values estimated by the binary mixing model. Therefore, the overall fresh water component likely is a mixture between sources originating from flood gates and (in January) dominating submarine groundwater discharge entering the Jade Bay. This model is consistent with the results obtained during the November campaign, when a more important contribution from flood gates is expected and a more variable fresh water end-member is estimated. The co-variations of the concentrations and the stable carbon isotope composition of DIC are applied to evaluate possible superimposed sink-source-transformation processes in the coastal waters and a general co-variation scheme is suggested.