989 resultados para Split tensile strength


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies indicate that a variation in the degree of crystallinity of the components of a polymer blend influences the mechanical properties. This variation can be obtained by subjecting the blend to heat treatments that lead to changes in the spherulitic structure. The aim of this work is to analyze the influence of different heat treatments on the variation of the degree of crystallinity and to establish a relationship between this variation and the mechanical behavior of poly(methyl methacrylate)/poly(ethylene terephthalate) recycled (PMMA / PETrec) with and without the use of compatibilizer agent poly(methyl methacrylate-al-glycidyl methacrylate-al-ethyl acrylate) (MMAGMA- EA). All compositions were subjected to two heat treatments. T1 heat treatment the samples were treated at 130 ° C for 30 minutes and cooled in air. In T2, the samples were treated at 230 ° C for 5 minutes and cooled to approximately -10 ° C. The variation of the degree of crystallinity was determined by the proportional relationship between crystallinity and density, with the density measured by pycnometry. The mechanical behavior was verified by tensile tests with and without the presence of notches and pre-cracks, and by method of fracture toughness in plane strain (KIC). We used the scanning electron microscopy (SEM) to analyze the fracture surface of the samples. The compositions subjected to heat treatment T1, in general, showed an increase in the degree of crystallinity in tensile strength and a tendency to decrease in toughness, while compositions undergoing treatment T2 showed that the opposite behavior. Therefore, this work showed that heat treatment can give a polymer blend further diversity of its properties, this being caused by changes in the crystal structure

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oil production in mature areas can be improved by advanced recovery techniques. In special, steam injection reduces the viscosity of heavy oils, thus improving its flow to surrounding wells. On the other hand, the usually high temperatures and pressures involved in the process may lead to cement cracking, negatively affecting both the mechanical stability and zonal isolation provided by the cement sheath of the well. The addition of plastic materials to the cement is an alternative to prevent this scenario. Composite slurries consisting of Portland cement and a natural biopolymer were studied. Samples containing different contents of biopolymer dispersed in a Portland cement matrix were prepared and evaluated by mechanical and rheological tests in order to assess their behavior according to API (American Petroleum Institute) guidelines. FEM was also applied to map the stress distribution encountered by the cement at bottom bole. The slurries were prepared according to a factorial experiment plan by varying three parameters, i.e., cement age, contents of biopolymer and water-to-cement ratio. The results revealed that the addition of the biopolymer reduced the volume of free water and the setting time of the slurry. In addition, tensile strength, compressive strength and toughness improved by 30% comparing hardened composites to plain Portland slurries. FEM results suggested that the stresses developed at bottomhole may be 10 to 100 times higher than the strength of the cement as evaluated in the lab by unconfined mechanical testing. An alternative approach is proposed to adapt the testing methodology used to evaluate the mechanical behavior of oilwell cement slurries by simulating the confined conditions encountered at bottornhole

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epoxy based nanocomposites with 1 wt % and 3 wt % of nanographite were processed by high shear mixing. The nanographite was obtained by chemical (acid intercalation), thermal (microwave expansion) and mechanical (ultrasonic exfoliation) treatments. The mechanical, electrical and thermal behavior of the nanocomposites was determined and evaluated as a function of the percentage of reinforcement. According to the experimental results, the electrical conductivity of epoxy was not altered by the addition of nanographite in the contents evaluated. However, based on the mechanical tests, nanocomposites with addition of 1 wt.% and 3 wt.% of nanographite showed increase in tensile strength of 16,62 % and 3,20 %, respectively, compared to the neat polymer. The smaller increase in mechanical strength of the nanocomposite with 3 wt.% of nanographite was related to the formation of agglomerates. The addition of 1 wt.% and 3 wt.% of nanographite also resulted in a decrease of 6,25 % and 17,60 %, respectively, in the relative density of the material. Thus, the specific strength of the nanocomposites was approximately 33,33 % greater when compared to the neat polymer. The addition of 1 wt.% and 3 wt.% of nanographite in the material increased the mean values of thermal conductivity in 28,33 % and 132,62 %, respectively, combined with a reduction of 26,11 % and 49,80 % in volumetric thermal capacity, respectively. In summary, it has been determined that an addition of nanographite of the order of 1 wt.% and 3 wt.% produced notable elevations in specific strength and thermal conductivity of epoxy

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The coatings mortars are essential elements of building structures because they execute an important role in protecting walls and are particularly exposed to aggressive action responsible for its degradation over time. The importance of wall coverings has been the subject of discussion and analysis in the conservation and rehabilitation of old buildings. Are sometimes removed and replaced with inappropriate solutions of constructive point of view or architecture. The most commonly used coatings on walls of old buildings is based on traditional hydraulic lime mortars. The present study aims at the formulation of new lime- based mortars and aerial fine aggregate, in order to contribute to a better field of conservation and restoration mortar coating of old buildings. Residue was used for polishing porcelain as fine aggregate, replacing the aggregate (sand), in percentages 05-30% by mass. We conducted a thorough evaluation of the mortar properties in fresh and hardened state by comparing the performance of the same with a reference mortar. The residue used was characterized as the density, bulk density, and particle size laser, scanning electron microscopy, X-ray diffraction and X-ray fluorescence. Formulations were produced 7, 6 with residue and one commonly used formulation, which served as a reference. In the formulations of lime mortars air (hydrated lime powder CH-I) has been adopted a stroke volume (1:3) with constant binder, was varied and the water / binder and aggregate and waste. For evaluation of mortars fresh, proceeded to consistency analysis, specific gravity, water retention and air content embedded. In the hardened state assays were performed in specific gravity, water retention, modulus of elasticity, tensile strength in bending, compressive strength, water absorption by capillary action, adhesion, tensile strength, resistance to shrinkage and salts by of crystallization trials with resources chloride solution, nitrate and sulfate all sodium in prismatic at 90 days of age, in addition to the micro structural analysis of mortars. Based on the results we can see that the mortar formulated with 10% content of waste and the reference free retraction feature more stable closer to neutrality. The composition of 10% was obtained better performance against the action of the salt crystallization. The mortar with 15% residue obtained better density, lower air content embedded and high capacity for water retention developing good workability. The replacement of 20% of waste generates a satisfactory utilization of resistance to compression, flexion and traction grip the base. And, finally, it can be seen that the mortar with 10, 15 and 20% residual show, in principle, good suitability as coatings, thus enabling a final result consistent with durability, workability and aesthetics developing therefore a material with better performance to repair or replace existing mortars in old buildings

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of new materials to fill the demand of technological advances is a challenge for many researchers around the world. Strategies such as making blends and composites are promising alternatives to produce materials with different properties from those found in conventional polymers. The objective of this study is to evaluate the effect of adding the copolymer poly(ethylene methyl acrylate) (EMA) and cotton linter fibers (LB) on the properties of recycled poly(ethylene terephthalate) (PETrec) by the development of PETrec/EMA blend and PETrec/EMA/LB blend composite. In order to improve the properties of these materials were added as compatibilizers: Ethylene - methyl acrylate - glycidyl methacrylate terpolymer (EMA-GMA) and maleic anhydride grafted polyethylene (PE-g-MA). The samples were produced using a single screw extruder and then injection molded. The obtained materials were characterized by thermogravimetry (TG), melt flow index (MFI) mensurements, torque rheometry, pycnometry to determinate the density, tensile testing and scanning electron microscopy (SEM). The rheological results showed that the addition of the EMA copolymer increased the viscosity of the blend and LB reduces the viscosity of the blend composite. SEM analysis of the binary blend showed poor interfacial adhesion between the PETrec matrix and the EMA dispersed phase, as well as the blend composite of PETrec/EMA/LB also observed low adhesion with the LB fiber. The tensile tests showed that the increase of EMA percentage decreased the tensile strength and the Young s modulus, also lower EMA percentage samples had increased the elongation at break. The blend composite showed an increase in the tensile strength and in the Young`s modulus, and a decrease in the elongation at break. The blend formulations with lower EMA percentages showed better mechanical properties that agree with the particle size analysis which showed that these formulations presented a smaller diameter of the dispersed phase. The blend composite mechanical tests showed that this material is stronger and stiffer than the blend PETrec/EMA, whose properties have been reduced due to the presence of EMA rubbery phase. The use of EMA-GMA was effective in reducing the particle size of the EMA dispersed phase in the PETrec/EMA blend and PE-g-MA showed evidences of reaction with LB and physical mixture with the EMA

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composite laminates with plies in different directions finely dispersed are classified as homogenized. The expected benefits of homogenization include increased mechanical strength, toughness and resistance to delamination. The objective of this study was to evaluate the effect of stacking sequence on the tensile strength of laminates. Composite plates were fabricated using unidirectional layers of carbon/epoxy prepreg with configurations [903/303/-303]S and [90/30/-30]3S. Specimens were subjected to tensile and open hole tension (OHT) tests. According to the experimental results, the mean values of strength for the homogenized laminates [90/30/-30]3S were 140% and 120% greater for tensile and OHT tests, respectively, as compared to laminates with configuration [903/303/-303]S. The increase in tensile strength for more homogenized laminates was associated with the increment in interlaminar interfaces, which requires more energy to produce delamination, and the more complicated crack propagation through plies with different orientations. OHT strength was not affected by the presence of the hole due to the predominance of the interlaminar shear stress in relation to the stress concentration produced by the hole

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Among the industries, those that produce ceramic porcelain for use in construction industry and oil, during the exploration and production period, play an important role in the production of waste. Much research has been carried out both by academia and the productive sector, sometimes reintroducing them in the same production line that generated them, sometimes in areas unrelated to their generation, as in the production of concrete and mortar for the construction, for example, but each one in an isolated way. In this research, the aim is to study the combined incorporation of the waste drill cuttings of oil well and the residue of the polishing of porcelain, generated in the final stage of finishing of this product in a clay matrix, for the production of red pottery, specifically bricks, ceramic blocks and tiles. The clay comes from the municipality of São Gonçalo, RN, the drilling waste is from the Natal basin, in Rio Grande do Norte, and the residue of the polishing proceeds from a ceramic porcelain of the State of Paraíba. For this purpose, we used a mixture of a plastic clay with a non-plastic, in a ratio of 50% each, settling formulations with the addition of these two residues in this clay matrix. In the formulations, both residues were incorporated with a minimum percentage of 2.5% and maximum of 12.5%, varying from 2.5% each, in each formulation, which the sum of the waste be no more than 15%. It should be noted that the residue of the polishing of ceramic porcelain is a IIa class (not inert). The materials were characterized by XRF, XRD, TG, DTA, laser granulometry and the plasticity index. The technological properties of water absorption, apparent porosity, linear shrinkage of burning, flexural tensile strength and bulk density were evaluated after the sintering of the pieces to 850 °C, 950 °C and 1050 °C, with a burning time of 3 hr, 3 hr and 30 minutes, and 3 hr and 50 minutes, respectively, with a heating rate of 10 °C/minute, for all formulations and landing of 30 minutes. To better understand the influence of each residue and temperature on the evaluated properties, we used the factorial planning and its surfaces of response for the interpretation of the results. It was found that the temperature has no statistical significance at a 95% of reliability level in flexural tensile strength and that it decreases the water absorption and the porosity, but increases the shrinkage and the bulk density. The results showed the feasibility of the desired incorporation, but adjusting the temperature to each product and formulation, and that the temperatures of 850 °C and 950 °C were the one that responded to the largest number of formulations

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2015.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports the properties of fly ash based geopolymer mortars made with dune sand. The geopolymer mortars of different cation type, namely sodium based (Na), potassium based (K) and a mixed Na/K, were prepared with dune sand (DS) and river sand (RS). The corresponding geopolymer pastes were also prepared. A series of tests including compressive strength, modulus of elasticity, splitting tensile strength, microanalysis (using scanning electron microscopy), porosity (using mercury intrusion porosimetry), sorptivity and air void (using section analysis method) were carried out. The results showed a strong correlation between strength and porosity of geopolymeric materials. The addition of DS had influences on the chemical compositions and physical properties of geopolymer mortars. These influences were dependent on the type of cation. Based on the results of mechanical properties, DS can be utilised as the fine aggregate for the production of geopolymer based construction material.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent developments in graphene oxide fibre (GO) processing include exciting demonstrations of hand woven textile structures. However, it is uncertain whether the fibres produced can meet the processing requirements of conventional textile manufacturing. This work reports for the first time the production of highly flexible and tough GO fibres that can be knitted using textile machinery. The GO fibres are made by using a dry-jet wet-spinning method, which allows drawing of the spinning solution (the GO dispersion) in several stages of the fibre spinning process. The coagulation composition and spinning conditions are evaluated in detail, which led to the production of densely packed fibres with near-circular cross-sections and highly ordered GO domains. The results are knittable GO fibres with Young's modulus of ~7.9 GPa, tensile strength of ~135.8 MPa, breaking strain of ~5.9%, and toughness of ~5.7 MJ m(-3). The combination of suitable spinning method, coagulation composition, and spinning conditions led to GO fibres with remarkable toughness; the key factor in their successful knitting. This work highlights important progress in realising the full potential of GO fibres as a new class of textile.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Covalent/crystallite cross-linked co-network hydrogels have been prepared using epoxy and PVA through a cyclic freezing-thawing process. The PVA/epoxy hydrogels show enhanced mechanical strength and toughness. PVA/epoxy hydrogels with 4 wt% epoxy loading display maximum tensile strength and toughness of 1.1 MPa and 2838 kJ/m3 respectively. The fracture toughness of PVA/epoxy hydrogels ranges from 160 to 450 J/m2. Radius of gyration and fractal information of the hydrogels were obtained by fitting the SAXS data to the Guinier and power law models. The enhanced mechanical properties are attributed to the increase in covalent bonding and decrease in crystallite distribution with an increase in epoxy content. However a larger hysteresis is shown for PVA/epoxy hydrogels due to irreversible destruction of covalent bonds between epoxy and PVA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, compaction by warm equal-channel angular pressing (ECAP) with back pressure was used to produce Ti-6Al-4V billets from both commercially pure (CP) titanium and titanium hydride (TiH 2) powders, which were mixed with pulverised binary Al-V master alloys of two distinct Al/V ratios and with elemental aluminium powder to arrive at the nominal alloy composition. It was demonstrated that the right combination of temperature, high hydrostatic pressure and plastic shear deformation permits consolidation of the powder mixture to maximum green densities of 99.26%. Moreover, after direct compaction of blended elemental powders by equal-channel angular pressing (ECAP) with back pressure, the sintering temperature required for chemical and microstructural homogenisation of the compacts could be reduced by 150-250°C. This was possible due to high green density, increased contact area between powder particles and the formation of fast diffusion paths associated with grain refinement by severe plastic deformation. The sintered Ti-6Al-4V billets exhibited a maximum density of 99.88%, Vickers hardness of 409-445 HV1 and ultimate tensile strength in the range of 1000-1080MPa. In contrast to findings of other authors, the use of TiH 2 powders in conjunction with ECAP processing did not bring any benefits with regard to the production of the Ti-6Al-4V alloy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aluminium-titanium (Al/Ti) composite sheets were fabricated via asymmetric accumulative roll bonding (AARB), which capitalises on additional shear to enhance plastic deformation. Multi-layers of Al alloy (AA1050) and commercially-pure Ti sheets were alternatively stacked and rolled-bonded with varied roll diameter ratios (dr) ranging from 1 to 2, for up to four passes. Annealing of selected composite sheets was subsequently carried out at 600°C for 24h to compare the rates of solid-state diffusion reactions between Al and Ti components. Mechanical tests revealed that both tensile strength and ductility of the sheets increase systematically with dr. The microstructures and the Al/Ti interfaces of the sheets were analysed in detail using TEM, SEM and FIB techniques. It is shown that not only does AARB lead to a more refined grain size of the Al matrix but also it promotes the development of a nanostructured surface layer on Ti that comprises crystallites of 50-100nm in size, which is otherwise absent in the case of symmetric ARB (i.e. dr=1). The AARB-processed sheets exhibit a larger thickness of the interdiffusion layer at the Al/Ti interfaces than the counterparts processed via the symmetric ARB route, the difference being in excess of 15%. The effects and the implications of AARB processing on mechanical behaviour and diffusion kinetics are discussed with respect to the microstructural evolutions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates the manufacturing of aluminium-boron carbide composites using the stir casting method. Mechanical and physical properties tests to obtain hardness, ultimate tensile strength (UTS) and density are performed after solidification of specimens. The results show that hardness and tensile strength of aluminium based composite are higher than monolithic metal. Increasing the volume fraction of B4C, enhances the tensile strength and hardness of the composite; however over-loading of B4C caused particle agglomeration, rejection from molten metal and migration to slag. This phenomenon decreases the tensile strength and hardness of the aluminium based composite samples cast at 800 °C. For Al-15 vol% B4C samples, the ultimate tensile strength and Vickers hardness of the samples that were cast at 1000 °C, are the highest among all composites. To predict the mechanical properties of aluminium matrix composites, two key prediction modelling methods including Neural Network learned by Levenberg-Marquardt Algorithm (NN-LMA) and Thin Plate Spline (TPS) models are constructed based on experimental data. Although the results revealed that both mathematical models of mechanical properties of Al-B4C are reliable with a high level of accuracy, the TPS models predict the hardness and tensile strength values with less error compared to NN-LMA models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of electrically conducting fibers based on known cytocompatible materials is of interest to those engaged in tissue regeneration using electrical stimulation. Herein, it is demonstrated that with the aid of rheological insights, optimized formulations of graphene containing spinnable poly(lactic-co-glycolic acid) (PLGA) dopes can be made possible. This helps extend the general understanding of the mechanics involved in order to deliberately translate the intrinsic superior electrical and mechanical properties of solution-processed graphene into the design process and practical fiber architectural engineering. The as-produced fibers are found to exhibit excellent electrical conductivity and electrochemical performance, good mechanical properties, and cellular affinity. At the highest loading of graphene (24.3 wt%), the conductivity of as-prepared fibers is as high as 150 S m-1 (more than two orders of magnitude higher than the highest conductivity achieved for any type of nanocarbon-PLGA composite fibers) reported previously. Moreover, the Young's modulus and tensile strength of the base fiber are enhanced 647- and 59-folds, respectively, through addition of graphene.