996 resultados para Southwestern Atlantic Ocean
Resumo:
Photography has become an integral part of submarine geological and biological investigations of the ocean bottom. The underwater cameras used to make these photographs were designed by Harold Edgerton. The pictures were taken from 1960 to 1962, from ships of the Woods Hole Oceanographic Institution. They show that life occurs even in the deepest trenches, and that sedimentary and biological processes in deep water do not differ in kind from those in shallow water.
Resumo:
The major topographic features, or provinces, beyond the continental slope off the Atlantic coast of the United States are (1) Sohm Plain, (2) Hatteras Plain, (3) Nares Plain, (4) Blake Basin, (5) Blake Plateau-Bahama Banks, and (6) Bermuda Rise. The whole of the described area is commonly referred to as the North American Basin. This basin is bounded on the north by Newfoundland Ridge and on the south by Puerto Rico Trench. Topographic features of note within the basin are the divide and the area of depressions between Sohm and Hatteras Plains, the sharply crested Blake Ridge, and the Puerto Rico Ridge. Recently accumulated data on deep-sea oores has given good evidence that the silt and sand covering the abyssal plains are displaced continental sediments in a virtually quartz-free oceanic environment. These sediments were deposited on a primary volcanic bottom. The primary or volcanic bottom is characterized by abyssal hills and seamounts, and the sediment bottom is characterized by abyssal plains, which extend seaward from the continental margins. On the Blake Plateau, bottom photographs and dredge hauls in the axis of the stream show that locally sediment has been removed and the bottom is paved with crusts and nodules of manganese. Photographs and dredged samples from the outer part of the New England Seamount, Chain and Caryn Peak also indicate extensive encrustations of manganese oxide which acts as a binding agent in areas of ooze or other organic debris and thus helps to stabilize the bottom.
Resumo:
We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.
Resumo:
Well-dated benthic foraminifer oxygen isotopic records (d18O) from different water depths and locations within the Atlantic Ocean exhibit distinct patterns and significant differences in timing over the last deglaciation. This has two implications: on the one hand, it confirms that benthic d18O cannot be used as a global correlation tool with millennial-scale precision, but on the other hand, the combination of benthic isotopic records with independent dating provides a wealth of information on past circulation changes. Comparing new South Atlantic benthic isotopic data with published benthic isotopic records, we show that (1) circulation changes first affected benthic d18O in the 1000-2200 m range, with marked decreases in benthic d18O taking place at ~17.5 cal. kyr B.P. (ka) due to the southward propagation of brine waters generated in the Nordic Seas during Heinrich Stadial 1 (HS1) cold period; (2) the arrival of d18O-depleted deglacial meltwater took place later at deeper North Atlantic sites; (3) hydrographic changes recorded in North Atlantic cores below 3000 m during HS1 do not correspond to simple alternations between northern- and southern-sourced water but likely reflect instead the incursion of brine-generated deep water of northern as well as southern origin; and (4) South Atlantic waters at ~44°S and ~3800 m depth remained isolated from better-ventilated northern-sourced water masses until after the resumption of North Atlantic Deep Water (NADW) formation at the onset of the Bølling-Allerod, which led to the propagation of NADW into the South Atlantic.
Resumo:
Quantitative ratios of tests of planktonic foraminiferal species in thanatocoenoses within the surface layer of bottom sediments from Iceland to the Equator are described. Subarctic, boreal, subtropical and tropical types of thanatocoenoses and their subtypes are distinguished. Each subtype corresponds to a 2-3°C interval of mean annual temperature of the upper layer of ocean water. Comparison of fossil thanatocoenoses from Quaternary sediment cores with recent thanatocoenoses offers new potentials for paleotemperature analysis.
Resumo:
In recent years, temporal fluctuations in the abundance of C. d. davisiana have been used frequently as a highresolution stratigraphic and paleoenvironmental tool. The modern ecology and morphologic variation (temporal and geographic) of this radiolarian species is evaluated to ascertain its potential stratigraphic and paleoenvironmental significance. Statistics were obtained on the width and height of all C. d. davisiana segments from Pleistocene populations of differing ages from the Northern Hemisphere (Labrador Sea and Iceland-Faeroe Ridge) and Southern Hemisphere (Namibian shelf and Meteor Rise). Results reveal that segment height variations between and within populations are more conservative than segment width. The mean sizes of the thorax and first abdominal segment have distinguishable differences between C. d. davisiana found in the North and South Atlantic. All populations have no significant difference in first abdominal segment width, however, mean heights of this segment differ greatly between populations of the North and South Atlantic. Second abdominal segment sizes show no clear population grouping. Size differences in post-cephalic segment size of these populations would appear to be related to some isolation of gene pools and possibly unknown paleoenvironmental factors. Temporal changes in the postcephalic size of C. d. davisiana may be used to: (1) identify temporally equivalent peaks in abundance of the species in a given region, (2) possibly evaluate the degree of mixing of water'masses between regions, and (3) trace the initial spread of the species from its area of origin. Cleve's 1887 plankton samples, between Greenland and Spitzsbergen, were studied and used in conjunction with other data to make the following conclusions on the modern ecology of C. d. davisiana in the Arctic and Greenland-Norwegian Seas. (1) It is presently absent in surface water plankton samples, (2) it currently lives at depths below 500 m, where it is rare, (3) it does not live in the upper 200 m under Arctic ice but is rare at greater depths, (4) it is absent in the upper 200 m near permanent Greenland Sea ice where normal oceanic salinity prevails, and (5) it is most common in deep marginal fjord environments which may serve as a refuge for the species during interglacial periods. In the Atlantic Ocean, the abundance of C. d. davisiana does not exceed 1% of the assemblage between the Subtropical Convergence of each hemisphere. In the Norwegian and Labrador Seas the species may occasionally be in the range of 1-5% of the modern radiolarian assemblage and never more than 5% in the southern high latitudes. Apparently only in the modern Sea of Okhotsk, does the species presently occur in high abundance. We concur with Morley and Hays (1983) that increased abundances are likely caused by the development of a strong low-salinity surface layer associated with seasonal sea ice melting and a strong temperature minimum above warmer and higher salinity intermediate waters. Similar conditions were frequent during the Pleistocene in the high latitudes and its modern scarcity outside the Sea of Okhotsk must be related to the absence of the presently unique conditions in the latter region.
Resumo:
Distribution pattern of titanium in Quaternary sediments of the Atlantic Ocean are examined on the base of 750 Ti and Fe determinations, and several dozen of complete chemical analyses. Analyses of surface sediment samples and sediment cores up to 6 m long were made. Stratigraphic levels from Middle Pleistocene to Holocene were identified from planktonic foraminifera. Distributions of Ti in recent and Pleistocene deposits were mapped. High titanium contents were found in sediments containing products of basalt vulcanism and in iron-manganese nodules. To determine origin of titanium concentrations in sediments, Ti/Fe ratios were calculated. Maximal values of this ratio were found in areas of basaltic volcanism and of intensive terrigenous sedimentation.
Resumo:
A compilation of 1118 surface sediment samples from the South Atlantic was used to map modern seafloor distribution of organic carbon content in this ocean basin. Using new data on Holocene sedimentation rates, we estimated the annual organic carbon accumulation in the pelagic realm (>3000 m water depth) to be approximately 1.8*10**12 g C/year. In the sediments underlying the divergence zone in the Eastern Equatorial Atlantic (EEA), only small amounts of organic carbon accumulate in spite of the high surface water productivity observed in that area. This implies that in the Eastern Equatorial Atlantic, organic carbon accumulation is strongly reduced by efficient degradation of organic matter prior to its burial. During the Last Glacial Maximum (LGM), accumulation of organic carbon was higher than during the mid-Holocene along the continental margins of Africa and South America (Brazil) as well as in the equatorial region. In the Eastern Equatorial Atlantic in particular, large relative differences between LGM and mid-Holocene accumulation rates are found. This is probably to a great extent due to better preservation of organic matter related to changes in bottom water circulation and not just a result of strongly enhanced export productivity during the glacial period. On average, a two- to three-fold increase in organic carbon accumulation during the LGM compared to mid-Holocene conditions can be deduced from our cores. However, for the deep-sea sediments this cannot be solely attributed to a glacial productivity increase, as changes in South Atlantic deep-water circulation seem to result in better organic carbon preservation during the LGM.
Resumo:
We investigate whether the oxygen isotope ratio in the test of Globorotalia truncatulinoides can serve as a proxy for intermediate depth (200-500 m) density. Since intermediate depth horizontal density gradients are associated with the vertical shear of upper ocean flows, this proxy could provide a tool for reconstructing past ocean circulation. The spatial pattern of core top Gr. truncatulinoides d18O in the Atlantic Ocean mimics the upper ocean density gradients associated with the major ocean currents. To better constrain the controls on the calcification depth(s) of Gr. truncatulinoides, we attempt to simulate the surface sediment data set using water column temperature and salinity conditions above the core sites. We predicted foraminiferal d18O for each core site assuming (1) the calcification occurs at a single depth and (2) the initial calcification is at the surface and the subsequent calcification is at 800 m water depth. The predicted d18O best resembles measured d18O of Gr. truncatulinoides when using (1) a single depth calcification at 350 m or (2) a two-depth approximation with 30% surface and 70% 800-m calcification. This result gives us confidence in the ability of d18O in Gr. truncatulinoides to proxy lateral density gradients at the intermediate depths associated with upper ocean flow.
Resumo:
This report is Volume 3 of Descriptions of WHOI rock dredge samples. This series represents a major effort to catalog the rock dredge samples in the WHOI Sea Floor samples collection, and to disseminate this information throughout the scientific community. Volume 3 contains sample descriptions and station data for the dredge stations from five cruises during the period September 1978 through December 1980. The material in this and subsequent volumes of rock descriptions was largely prepared onboard ship by the participating scientists. Volume 3 was printed prior to volumes 1 and 2 because of the excellent documentation of the samples represented in this volume.
Resumo:
Investigations of piston cores from the Vema Channel and lower flanks of the Rio Grande Rise suggest the presence of episodic flow of deep and bottom water during the Late Pleistocene. Cores from below the present-day foraminiferal lysocline (at ~4000 m) contain an incomplete depositional record consisting of Mn nodules and encrustations, hemipelagic clay, displaced high-latitude diatoms, and poorly preserved heterogeneous microfossil assemblages. Cores from the depth range between 2900 m and 4000 m contain an essentially complete Late Pleistocene record, and consist of well-defined carbonate dissolution cycles with periodicities of ~100,000 years. Low carbonate content and increased dissolution correspond to glacial episodes, as interpreted by oxygen isotopic analysis of bulk foraminiferal assemblages. The absence of diagnostic high-latitude indicators (Antarctic diatoms) within the dissolution cyclss, however, suggests that AABW may not have extended to significantly shallower elevations on the lower flanks of the Rio Grande Rise during the Late Pleistocene. Therefore episodic AABW flow may not necessarily be the mechanism responsible for producing these cyclic events. This interpretation is also supported by the presence of an apparently complete Brunhes depositional record in the same cores, suggesting current velocities insufficient for significant erosion. Fluctuations in the properties and flow characteristics of another water mass, such as NADW, may be involved. The geologic evidence in core-top samples near the present-day AABW/NADW transition zone is consistent with either of two possible interpretations of the upper limit of AABW on the east flank of the channel. The foraminiferal lysocline, at ~4000 m, is near the top of the benthic thermocline and nepheloid layer, and may therefore correspond to the upper limit of relatively corrosive AABW. On the other hand, the carbonate compensation depth (CDD) at ~4250 m, which corresponds to the maximum gradient in the benthic thermocline, is characterized by rapid deposition of relatively fine-grained sediment. Such a zone of convergence and preferential sediment accumulation would be expected near the level of no motion in the AABW/NADW transition zone as a consequence of Ekman-layer veering of the mean velocity vector in the bottom boundary layer. It is possible that both of these interpretations are in part correct. The "level of no motion'' may in fact correspond to the CCD, while at the same time relatively corrosive water of Antarctic origin may mix with overlying NADW and therefore elevate the foraminifera] lysocline to depths above the level of no motion. Closely spaced observations of the hydrography and flow characteristics within the benthic thermocline will be required in order to use sediment parameters as more precise indicators of paleo-circulation.
Resumo:
Organic matter has been characterized in samples of Pleistocene, Pliocene, and Miocene sediments from seven Deep Sea Drilling Project sites in the subtropical South Atlantic Ocean. Organic carbon concentrations average 0.3% for most samples, and n-alkanoic acid, n-alkanol, and alkane biomarkers indicate extensive microbial reworking of organic matter in these organic-carbon-lean sediments. Samples from the easternmost parts of the South Atlantic contain an average of 4.1% organic carbon and reflect the high productivity associated with the Benguela Current. Lipid biomarkers show less microbial reworking in these sediments. Eolian transport of land-derived hydrocarbons is evident at most of these oceanic locations.