963 resultados para Southwest Baltimore
Resumo:
A significant portion of the UK’s transportation system relies on a network of geotechnical earthworks (cuttings and embankments) that were constructed more than 100 years ago, whose stability is affected by the change in precipitation patterns experienced over the past few decades. The vulnerability of these structures requires a reliable, cost- and time-effective monitoring of their geomechanical condition. We have assessed the potential application of P-wave refraction for tracking the seasonal variations of seismic properties within an aged clay-filled railway embankment, located in southwest England. Seismic data were acquired repeatedly along the crest of the earthwork at regular time intervals, for a total period of 16 months. P-wave first-break times were picked from all available recorded traces, to obtain a set of hodocrones referenced to the same spatial locations, for various dates along the surveyed period of time. Traveltimes extracted from each acquisition were then compared to track the pattern of their temporal variability. The relevance of such variations over time was compared with the data experimental uncertainty. The multiple set of hodocrones was subsequently inverted using a tomographic approach, to retrieve a time-lapse model of VPVP for the embankment structure. To directly compare the reconstructed VPVP sections, identical initial models and spatial regularization were used for the inversion of all available data sets. A consistent temporal trend for P-wave traveltimes, and consequently for the reconstructed VPVP models, was identified. This pattern could be related to the seasonal distribution of precipitation and soil-water content measured on site.
Resumo:
PURPOSE: To determine whether optical aberrations caused by cataract can be detected and quantified objectively using a newly described focus detection system (FDS). SETTING: The Wilmer Opthalmological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. METHODS: The FDS uses a bull's eye photodetector to measure the double-pass blur produced from a point source of light. To determine the range and level of focus, signals are measured with a series of trial lenses in the light path selected to span the point of best focus to generate focus curves. The best corrected visual acuity (BCVA), refractive error, lens photograph grades, and FDS signals were obtained in 18 patients scheduled to have cataract surgery. The tests were repeated 6 weeks after surgery. RESULTS: The mean FDS outcome measures improved after cataract surgery, with increased peak height (P=.001) and decreased peak width (P=.001). Improvement in signal strength (integral of signal within +/-1.5 diopters of the point of best focus) strongly correlated with improvement in peak height (R(2)=.88, P<.0001) and photographic cataract grade (R(2)=.72, P<.0001). The mean BCVA improved from 20/50 to 20/26 (P<.0001). The improvement in BCVA correlated more closely with FDS signal strength (R(2)=.44, P=.001) than with cataract grade (R(2)=.25, P=.06). CONCLUSIONS: Improvement in FDS outcome measures correlated with cataract severity and improvement in visual acuity. This objective approach may be useful in long-term studies of cataract progression.