983 resultados para Somatic cell count
Resumo:
Human auditory nerve afferents consist of two separate systems; one is represented by the large type I cells innervating the inner hair cells and the other one by the small type II cells innervating the outer hair cells. Type I spiral ganglion neurons (SGNs) constitute 96% of the afferent nerve population and, in contrast to other mammals, their soma and pre- and post-somatic segments are unmyelinated. Type II nerve soma and fibers are unmyelinated. Histopathology and clinical experience imply that human SGNs can persist electrically excitable without dendrites, thus lacking connection to the organ of Corti. The biological background to this phenomenon remains elusive. We analyzed the pre- and post-somatic segments of the type I human SGNs using immunohistochemistry and transmission electron microscopy (TEM) in normal and pathological conditions. These segments were found surrounded by non-myelinated Schwann cells (NMSCs) showing strong intracellular expression of laminin-β2/collagen IV. These cells also bordered the perikaryal entry zone and disclosed surface rugosities outlined by a folded basement membrane (BM) expressing laminin-β2 and collagen IV. It is presumed that human large SGNs are demarcated by three cell categories: (a) myelinated Schwann cells, (b) NMSCs and (c) satellite glial cells (SGCs). Their BMs express laminin-β2/collagen IV and reaches the BM of the sensory epithelium at the habenula perforata. We speculate that the NMSCs protect SGNs from further degeneration following dendrite loss. It may give further explanation why SGNs can persist as electrically excitable monopolar cells even after long-time deafness, a blessing for the deaf treated with cochlear implantation.
Resumo:
Segmented filamentous bacterium (SFB) is a symbiont that drives postnatal maturation of gut adaptive immune responses. In contrast to nonpathogenic E. coli, SFB stimulated vigorous development of Peyer's patches germinal centers but paradoxically induced only a low frequency of specific immunoglobulin A (IgA)-secreting cells with delayed accumulation of somatic mutations. Moreover, blocking Peyer's patch development abolished IgA responses to E. coli, but not to SFB. Indeed, SFB stimulated the postnatal development of isolated lymphoid follicles and tertiary lymphoid tissue, which substituted for Peyer's patches as inductive sites for intestinal IgA and SFB-specific T helper 17 (Th17) cell responses. Strikingly, in mice depleted of gut organized lymphoid tissue, SFB still induced a substantial but nonspecific intestinal Th17 cell response. These results demonstrate that SFB has the remarkable capacity to induce and stimulate multiple types of intestinal lymphoid tissues that cooperate to generate potent IgA and Th17 cell responses displaying only limited target specificity.
Resumo:
BACKGROUND Even among HIV-infected patients who fully suppress plasma HIV RNA replication on antiretroviral therapy, genetic (e.g. CCL3L1 copy number), viral (e.g. tropism) and environmental (e.g. chronic exposure to microbial antigens) factors influence CD4 recovery. These factors differ markedly around the world and therefore the expected CD4 recovery during HIV RNA suppression may differ globally. METHODS We evaluated HIV-infected adults from North America, West Africa, East Africa, Southern Africa and Asia starting non-nucleoside reverse transcriptase inhibitorbased regimens containing efavirenz or nevirapine, who achieved at least one HIV RNA level <500/ml in the first year of therapy and observed CD4 changes during HIV RNA suppression. We used a piecewise linear regression to estimate the influence of region of residence on CD4 recovery, adjusting for socio-demographic and clinical characteristics. We observed 28 217 patients from 105 cohorts over 37 825 person-years. RESULTS After adjustment, patients from East Africa showed diminished CD4 recovery as compared with other regions. Three years after antiretroviral therapy initiation, the mean CD4 count for a prototypical patient with a pre-therapy CD4 count of 150/ml was 529/ml [95% confidence interval (CI): 517–541] in North America, 494/ml (95% CI: 429–559) in West Africa, 515/ml (95% CI: 508–522) in Southern Africa, 503/ml (95% CI: 478–528) in Asia and 437/ml (95% CI: 425–449) in East Africa. CONCLUSIONS CD4 recovery during HIV RNA suppression is diminished in East Africa as compared with other regions of the world, and observed differences are large enough to potentially influence clinical outcomes. Epidemiological analyses on a global scale can identify macroscopic effects unobservable at the clinical, national or individual regional level.
Resumo:
"Flare-up" reactions are late manifestations of severe T-cell-mediated drug hypersensitivity reactions. Management is anti-inflammatory treatment and avoiding unnecessary medicines. Symptoms like fever, lymph node swelling, and blood count abnormalities may lead to confusion with bacterial infections. For prompt recognition it is important to keep the differential diagnosis in mind.
Resumo:
Small cell lung cancer (SCLC) accounts for 15% of lung cancer cases and is associated with a dismal prognosis. Standard therapeutic regimens have been improved over the past decades, but without a major impact on patient survival. The development of targeted therapies based on a better understanding of the molecular basis of the disease is urgently needed. At the genetic level, SCLC appears very heterogenous, although somatic mutations targeting classical oncogenes and tumor suppressors have been reported. SCLC also possesses somatic mutations in many other cancer genes, including transcription factors, enzymes involved in chromatin modification, receptor tyrosine kinases and their downstream signaling components. Several avenues have been explored to develop targeted therapies for SCLC. So far, however, there has been limited success with these targeted approaches in clinical trials. Further progress in the optimization of targeted therapies for SCLC will require the development of more personalized approaches for the patients.
Resumo:
Red Blood cell mediated and glass needle mediated microinjection technology was used to introduce macromolecules into mammalian somatic cells. The biological activities of DNA synthesis inducing factor(s) (Chapter 1), mitotic factor(s) (Chapter 2), and DNA coding for ovalbumin and thymidine kinase (Chapter 3) were studied following injection into mammalian somatic cells.^ Chapter 1. A cell undergoing DNA replication (S phase) contains a factor(s) that induces DNA synthesis prematurely in a G(,1) nucleus when an S phase cell is fused to a G(,1) cell. An assay for the active factor(s) was developed in which a mixture of s phase extract loaded red blood cells (RBC) and synchronous G(,1) HeLa cells was centrifuged onto Concanavalin A (Con A) treated coverslips and fused by PEG. This technique is called "Centrifusion". The synchronous G(,1) HeLa cells injected with S phase extract initiated DNA synthesis earlier than the control G(,1) cells mock injected with RBC loaded with buffer.^ Chapter 2. It has been demonstrated that fusion between a mitotic and an interphase cell usually leads to breakdown of the interphase nucleus, followed by condensation of the interphase chromatin into discrete chromosomes, a process termed premature chromosome condensation. I wanted to develop an assay for the mitotic factor(s) that induces premature chromosome condensation. Experiments were performed utilizing glass needle mediated microinjection of HeLa cell mitotic extract into interphase somatic mammalian cells in an attempt to induce premature chromosome condensation. However, I was not able to induce premature chromosome condensation in the interphase cells, probably because of an inability to introduce sufficient mitotic factor(s) into the cells.^ Chapter 3. A recombinant plasmid containing the chicken ovalbumin gene and three copies of the Herpes thymidine Kinase gene (pOV12-TK) was introduced into mouse LMTK('-) cell nuclei using glass needle mediated gene transfer resulting in LMTK('+) clones that were selected for in HAT medium. Restriction enzyme analysis of the high molecular weight DNA from 6 HAT medium survivor cell clones revealed the presence of one or at best only a few copies of the 12kb ovalbumin gene per mouse genome. Further analysis showed the ovalbumin DNA was not rearranged and was associated with high molecular weight mouse cell DNA. Each of the analyzed cell clones produced ovalbumin demonstrating that the biological activity of the microinjected ovalbumin was retained. ^
Resumo:
MacroH2A is a core histone variant that plays an important role in the X-inactivation process during differentiation of embryonic stem cells. It has been shown that macroH2A changes in localization during the cell cycle of somatic cells. This study aims to determine how macroH2A changes during the cell cycle of embryonic stem cells. Male and female mouse embryonic stem cells were transfected with a GFP::macroH2A construct and the relationship between macroH2A and the cell cycle was determined using FACS. This study shows that macroH2A is altered during the cell cycle of embryonic stem cells as it is in somatic cells and that in randomly cycling cells, there is a correlation between macroH2A expression and the phases of the cell cycle. High GFP expressing cells are mostly in the G2/M phase and low GFP expressing cells are mostly in the G1 phase. This correlation indicated that macroH2A is replicated with cellular DNA during the S phase resulting in higher expression in the G2/M phase. Future research, such as RT-PCR and differentiation experiments, is needed to further study this relationship and determine whether this change is at the protein or RNA level and how it changes during differentiation.
Resumo:
Human embryonic stem cells (hESCs) have the potential to differentiate to all adult somatic cells. This property makes hESCs a very promising area of research for the treatment of disorders in which specific cell populations need to be restored. Despite this potential, research that focuses on producing mesodermally derived cell populations from hESCs is decidedly limited, notwithstanding the prevalence of disorders involving mesodermal tissues for which treatment options are limited. Skeletal muscle myoblasts are derivatives of mesodermal cells and are characterized by the expression of the MyoD gene. These cells are difficult to obtain from hESCs in a reproducible and efficient manner. Recent developments in the field have showed some success in obtaining myogenic cells from hESCs through a mesenchymal stem cell (MSC)-like intermediate population. MSCs, which are an adult stem cell population typically derived from the bone marrow, are capable of generating multiple cell types including skeletal muscle. The aim of this study was to develop an efficient method that derives myoblasts from an MSC-like intermediate. To accomplish this goal, we first set out to isolate and expand the MSC-like intermediate from hESCs differentiated in vitro. Difficulties in reproducing published cell-differentiation methodologies, which represent a significant and familiar challenge in hESC research, are highlighted in this report.
Resumo:
The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining porewater geochemistry, in situ quantification of fluxes and consumption of methane, as well bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.
Resumo:
A permanent line of mouse embryo fibroblasts was treated with concentrations of the anticancer drug methotrexate (MTX) that left 20–50% surviving colonies. The surviving population initially multiplied at a much slower rate than controls after subculture in the absence of the drug, and required 9–12 days of serial subculture, with selective growth of the faster growing cells, to approximate the control rate. To determine the distribution of growth rates of cells in the original posttreatment populations, many single cells were isolated in multiwell plates immediately after the treatment period, and the resulting clones were serially subcultured. Most of the control clones underwent about 2 population doublings per day (PD/D). Almost all the survivors of MTX treatment multiplied at heterogeneously reduced rates, ranging from 0.6 PD/D to as high as control rates for a very few clones. They maintained the reduced rates through many subcultivations. The heritability of the reduced growth rates indicates that most cells that retain proliferative capacity after treatment with MTX carry random genetic damage that is perpetuated through many divisions of their progeny. Similar results have been described for cells that survive x-irradiation, and suggest random genetic damage is a common occurrence among cells in rapidly growing tissues that survive cytotoxic treatment. It also occurs in serial subcultures of cells that had been held under the constraint of confluence for extended periods, which suggests that the accumulation of random genetic damage to somatic cells during aging of mammals underlies the reduction of growth rate and function of the cells that characterizes the aging process.
Resumo:
Common Variable Immuno-Deficiency (CVID) is the most common symptomatic primary antibody-deficiency syndrome, but the basic immunologic defects underlying this syndrome are not well defined. We report here that among eight patients studied (six CVID and two hypogammaglobulinemic patients with recurrent infections), there is in two CVID patients a dramatic reduction in Ig V gene somatic hypermutation with 40–75% of IgG transcripts totally devoid of mutations in the circulating memory B cell compartment. Functional assays of the T cell compartment point to an intrinsic B cell defect in the process of antibody affinity maturation in these two cases.
Resumo:
Although human and rodent telomeres have been studied extensively, very little is known about telomere dynamics in other vertebrates. Moreover, our current dependence on mice as a model for human tumorigenesis and aging poses a problem because human and mouse telomere biology is very different. To explore whether chickens might provide a more useful model, we have examined telomerase activity and telomere length in chicken tissues as well as in primary cell cultures. Although chicken telomeres resemble human telomeres in that they are 8–20 kb in length, the distribution of telomerase activity in chickens resembles what is found in mice. Active enzyme is present in germline tissue as well as in a wide range of somatic tissues. Because chicken cells exhibit extremely low rates of spontaneous immortalization, this finding indicates that constitutive telomerase expression does not necessarily lead to an increased immortalization frequency. Finally, we found that telomerase activity is greatly down-regulated when primary cultures are established from chicken embryos. Although this down-regulation explains the telomere loss and replicative senescence that we observed in fibroblast cultures, it raises questions concerning how relevant studies of senescence in primary cell cultures are to aging in whole animals.
Resumo:
Genetic events leading to the loss of heterozygosity (LOH) have been shown to play a crucial role in the development of cancer. However, LOH events do not occur only in genetically unstable cancer cells but also have been detected in normal somatic cells of mouse and man. Mice, in which one of the alleles for adenine phosphoribosyltransferase (Aprt) has been disrupted by gene targeting, were used to investigate the potency of carcinogens to induce LOH in vivo. After 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) exposure, a 3-fold stronger mutagenic response was detected at the autosomal Aprt gene than at the X chromosomal hypoxantine-guanine phosphoribosyltransferase (Hprt) gene in splenic T-lymphocytes. Allele-specific PCR analysis showed that the normal, nontargeted Aprt allele was lost in 70% of the DMBA-induced Aprt mutants. Fluorescence in situ hybridization analysis demonstrated that the targeted allele had become duplicated in almost all DMBA-induced mutants that displayed LOH at Aprt. These results indicate that the main mechanisms by which DMBA caused LOH were mitotic recombination or chromosome loss and duplication but not deletion. However, after treatment with the alkylating agent N-ethyl-N-nitrosourea, Aprt had a similar mutagenic response to Hprt while the majority (90%) of N-ethyl-N-nitrosourea-induced Aprt mutants had retained both alleles. Unexpectedly, irradiation with x-rays, which induce primarily large deletions, resulted in a significant increase of the mutant frequency at Hprt but not at Aprt. This in vivo study clearly indicates that, in normal somatic cells, carcinogen exposure can result in the induction of LOH events that are compatible with cell survival and may represent an initiating event in tumorigenesis.
Resumo:
The efficient introduction of somatic mutations in a given gene, at a given time, in a specific cell type will facilitate studies of gene function and the generation of animal models for human diseases. We have shown previously that conditional recombination–excision between two loxP sites can be achieved in mice by using the Cre recombinase fused to a mutated ligand binding domain of the human estrogen receptor (Cre-ERT), which binds tamoxifen but not estrogens. DNA excision was induced in a number of tissues after administration of tamoxifen to transgenic mice expressing Cre-ERT under the control of the cytomegalovirus promoter. However, the efficiency of excision varied between tissues, and the highest level (≈40%) was obtained in the skin. To determine the efficiency of excision mediated by Cre-ERT in a given cell type, we have now crossed Cre-ERT-expressing mice with reporter mice in which expression of Escherichia coli β-galactosidase can be induced through Cre-mediated recombination. The efficiency and kinetics of this recombination were analyzed at the cellular level in the epidermis of 6- to 8-week-old double transgenic mice. We show that site-specific excision occurred within a few days of tamoxifen treatment in essentially all epidermis cells expressing Cre-ERT. These results indicate that cell-specific expression of Cre-ERT in transgenic mice can be used for efficient tamoxifen-dependent, Cre-mediated recombination at loci containing loxP sites to generate site-specific somatic mutations in a spatio-temporally controlled manner.
Resumo:
Multiple isoforms of type 1 hexokinase (HK1) are transcribed during spermatogenesis in the mouse, including at least three that are presumably germ cell specific: HK1-sa, HK1-sb, and HK1-sc. Each of these predicted proteins contains a common, germ cell-specific sequence that replaces the porin-binding domain found in somatic HK1. Although HK1 protein is present in mature sperm and is tyrosine phosphorylated, it is not known whether the various potential isoforms are differentially translated and localized within the developing germ cells and mature sperm. Using antipeptide antisera against unique regions of HK1-sa and HK1-sb, it was demonstrated that these isoforms were not found in pachytene spermatocytes, round spermatids, condensing spermatids, or sperm, suggesting that HK1-sa and HK1-sb are not translated during spermatogenesis. Immunoreactivity was detected in protein from round spermatids, condensing spermatids, and mature sperm using an antipeptide antiserum against the common, germ cell-specific region, suggesting that HK1-sc was the only germ cell-specific isoform present in these cells. Two-dimensional SDS-PAGE suggested that all of the sperm HK1-sc was tyrosine phosphorylated, and that the somatic HK1 isoform was not present. Immunoelectron microscopy revealed that HK1-sc was associated with the mitochondria and with the fibrous sheath of the flagellum and was found in discrete clusters in the region of the membranes of the sperm head. The unusual distribution of HK1-sc in sperm suggests novel functions, such as extramitochondrial energy production, and also demonstrates that a hexokinase without a classical porin-binding domain can localize to mitochondria.