979 resultados para Skinner, Brian
Resumo:
This paper describes a knowledge-based temporal representation of state transitions for industrial real-time systems. To allow expression of uncertainty, we shall define fluents as disjuncts of positive/negative time-varying properties. A state of the world is represented as a collection of fluents, which is usually incomplete in the sense that neither the positive form nor the negative form of some properties can be implied from it. The world under consideration is assumed to persist in a given state until an action(s) takes place to effect a transition of it into another state, where actions may either be instantaneous or durative. High-level causal laws are characterized in terms of relationships between actions and the involved world states. An effect completion axiom is imposed on each causal law to guarantee that all the fluents that can be affected by the performance of the corresponding action are governed. This completion requirement is practical for most industrial real-time applications and in fact provides a simple and effective treatment to the so-called frame problem.
Resumo:
Guest editorial
Resumo:
Reply to author's reply
Resumo:
This paper describes the architecture of the case based reasoning (CBR) component of Smartfire, a fire field modelling tool for use by members of the Fire Safety Engineering community who are not expert in modelling techniques. The CBR system captures the qualitative reasoning of an experienced modeller in the assessment of room geometries so as to set up the important initial parameters of the problem. The system relies on two important reasoning principles obtained from the expert: 1) there is a natural hierarchical retrieval mechanism which may be employed; and 2) much of the reasoning on a qualitative level is linear in nature, although the computational solution of the problem is non-linear. The paper describes the qualitative representation of geometric room information on which the system is based, and the principles on which the CBR system operates.
Resumo:
In this paper, we discuss the problem of maintenance of a CBR system for retrieval of rotationally symmetric shapes. The special feature of this system is that similarity is derived primarily from graph matching algorithms. The special problem of such a system is that it does not operate on search indices that may be derived from single cases and then used for visualisation and principle component analyses. Rather, the system is built on a similarity metric defined directly over pairs of cases. The problems of efficiency, consistency, redundancy, completeness and correctness are discussed for such a system. Performance measures for the CBR system are given, and the results for trials of the system are presented. The competence of the current case-base is discussed, with reference to a representation of cases as points in an n-dimensional feature space, and a Gramian visualisation. A refinement of the case base is performed as a result of the competence analysis and the performance of the case-base before and after refinement is compared.
Resumo:
This paper describes the approach to the modelling of experiential knowledge in an industrial application of Case-Based Reasoning (CBR). The CBR involves retrieval techniques in conjunction with a relational database. The database is especially designed as a repository of experiential knowledge, and includes qualitative search indices. The system is intended to help design engineers and material engineers in the submarine cable industry. It consists of three parts: a materials database; a database of experiential knowledge; and a CBR system used to retrieve similar past designs based upon component and material qualitative descriptions. The system is currently undergoing user testing at the Alcatel Submarine Networks site in Greenwich.
Resumo:
This paper describes the architecture of the knowledge based system (KBS) component of Smartfire, a fire field modelling tool for use by members of the fire safety engineering community who are not expert in modelling techniques. The KBS captures the qualitative reasoning of an experienced modeller in the assessment of room geometries, so as to set up the important initial parameters of the problem. Fire modelling expertise is an example of geometric and spatial reasoning, which raises representational problems. The approach taken in this project is a qualitative representation of geometric room information based on Forbus’ concept of a metric diagram. This takes the form of a coarse grid, partitioning the domain in each of the three spatial dimensions. Inference over the representation is performed using a case-based reasoning (CBR) component. The CBR component stores example partitions with key set-up parameters; this paper concentrates on the key parameter of grid cell distribution.
Resumo:
This paper describes progress on a project to utilise case based reasoning methods in the design and manufacture of furniture products. The novel feature of this research is that cases are represented as structures in a relational database of products, components and materials. The paper proposes a method for extending the usual "weighted sum" over attribute similarities for a ·single table to encompass relational structures over several tables. The capabilities of the system are discussed, particularly with respect to differing user objectives, such as cost estimation, CAD, cutting scheme re-use, and initial design. It is shown that specification of a target case as a relational structure combined with suitable weights can fulfil several user functions. However, it is also shown that some user functions cannot satisfactorily be specified via a single target case. For these functions it is proposed to allow the specification of a set of target cases. A derived similarity measure between individuals and sets of cases is proposed.
Resumo:
The so-called dividing instant (DI) problem is an ancient historical puzzle encountered when attempting to represent what happens at the boundary instant which divides two successive states. The specification of such a problem requires a thorough exploration of the primitives of the temporal ontology and the corresponding time structure, as well as the conditions that the resulting temporal models must satisfy. The problem is closely related to the question of how to characterize the relationship between time periods with positive duration and time instants with no duration. It involves the characterization of the ‘closed’ and ‘open’ nature of time intervals, i.e. whether time intervals include their ending points or not. In the domain of artificial intelligence, the DI problem may be treated as an issue of how to represent different assumptions (or hypotheses) about the DI in a consistent way. In this paper, we shall examine various temporal models including those based solely on points, those based solely on intervals and those based on both points and intervals, and point out the corresponding DI problem with regard to each of these temporal models. We shall propose a classification of assumptions about the DI and provide a solution to the corresponding problem.
Resumo:
This paper presents a framework for Historical Case-Based Reasoning (HCBR) which allows the expression of both relative and absolute temporal knowledge, representing case histories in the real world. The formalism is founded on a general temporal theory that accommodates both points and intervals as primitive time elements. A case history is formally defined as a collection of (time-independent) elemental cases, together with its corresponding temporal reference. Case history matching is two-fold, i.e., there are two similarity values need to be computed: the non-temporal similarity degree and the temporal similarity degree. On the one hand, based on elemental case matching, the non-temporal similarity degree between case histories is defined by means of computing the unions and intersections of the involved elemental cases. On the other hand, by means of the graphical presentation of temporal references, the temporal similarity degree in case history matching is transformed into conventional graph similarity measurement.
Resumo:
In this paper we propose a generalisation of the k-nearest neighbour (k-NN) retrieval method based on an error function using distance metrics in the solution and problem space. It is an interpolative method which is proposed to be effective for sparse case bases. The method applies equally to nominal, continuous and mixed domains, and does not depend upon an embedding n-dimensional space. In continuous Euclidean problem domains, the method is shown to be a generalisation of the Shepard's Interpolation method. We term the retrieval algorithm the Generalised Shepard Nearest Neighbour (GSNN) method. A novel aspect of GSNN is that it provides a general method for interpolation over nominal solution domains. The performance of the retrieval method is examined with reference to the Iris classification problem,and to a simulated sparse nominal value test problem. The introducion of a solution-space metric is shown to out-perform conventional nearest neighbours methods on sparse case bases.