981 resultados para Simple linear regression
Resumo:
A continuous tropospheric and stratospheric vertically resolved ozone time series, from 1850 to 2099, has been generated to be used as forcing in global climate models that do not include interactive chemistry. A multiple linear regression analysis of SAGE I+II satellite observations and polar ozonesonde measurements is used for the stratospheric zonal mean dataset during the well-observed period from 1979 to 2009. In addition to terms describing the mean annual cycle, the regression includes terms representing equivalent effective stratospheric chlorine (EESC) and the 11-yr solar cycle variability. The EESC regression fit coefficients, together with pre-1979 EESC values, are used to extrapolate the stratospheric ozone time series backward to 1850. While a similar procedure could be used to extrapolate into the future, coupled chemistry climate model (CCM) simulations indicate that future stratospheric ozone abundances are likely to be significantly affected by climate change, and capturing such effects through a regression model approach is not feasible. Therefore, the stratospheric ozone dataset is extended into the future (merged in 2009) with multimodel mean projections from 13 CCMs that performed a simulation until 2099 under the SRES (Special Report on Emission Scenarios) A1B greenhouse gas scenario and the A1 adjusted halogen scenario in the second round of the Chemistry-Climate Model Validation (CCMVal-2) Activity. The stratospheric zonal mean ozone time series is merged with a three-dimensional tropospheric data set extracted from simulations of the past by two CCMs (CAM3.5 and GISSPUCCINI)and of the future by one CCM (CAM3.5). The future tropospheric ozone time series continues the historical CAM3.5 simulation until 2099 following the four different Representative Concentration Pathways (RCPs). Generally good agreement is found between the historical segment of the ozone database and satellite observations, although it should be noted that total column ozone is overestimated in the southern polar latitudes during spring and tropospheric column ozone is slightly underestimated. Vertical profiles of tropospheric ozone are broadly consistent with ozonesondes and in-situ measurements, with some deviations in regions of biomass burning. The tropospheric ozone radiative forcing (RF) from the 1850s to the 2000s is 0.23Wm−2, lower than previous results. The lower value is mainly due to (i) a smaller increase in biomass burning emissions; (ii) a larger influence of stratospheric ozone depletion on upper tropospheric ozone at high southern latitudes; and possibly (iii) a larger influence of clouds (which act to reduce the net forcing) compared to previous radiative forcing calculations. Over the same period, decreases in stratospheric ozone, mainly at high latitudes, produce a RF of −0.08Wm−2, which is more negative than the central Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) value of −0.05Wm−2, but which is within the stated range of −0.15 to +0.05Wm−2. The more negative value is explained by the fact that the regression model simulates significant ozone depletion prior to 1979, in line with the increase in EESC and as confirmed by CCMs, while the AR4 assumed no change in stratospheric RF prior to 1979. A negative RF of similar magnitude persists into the future, although its location shifts from high latitudes to the tropics. This shift is due to increases in polar stratospheric ozone, but decreases in tropical lower stratospheric ozone, related to a strengthening of the Brewer-Dobson circulation, particularly through the latter half of the 21st century. Differences in trends in tropospheric ozone among the four RCPs are mainly driven by different methane concentrations, resulting in a range of tropospheric ozone RFs between 0.4 and 0.1Wm−2 by 2100. The ozone dataset described here has been released for the Coupled Model Intercomparison Project (CMIP5) model simulations in netCDF Climate and Forecast (CF) Metadata Convention at the PCMDI website (http://cmip-pcmdi.llnl.gov/).
Resumo:
Low variability of crop production from year to year is desirable for many reasons, including reduced income risk and stability of supplies. Therefore, it is important to understand the nature of yield variability, whether it is changing through time, and how it varies between crops and regions. Previous studies have shown that national crop yield variability has changed in the past, with the direction and magnitude dependent on crop type and location. Whilst such studies acknowledge the importance of climate variability in determining yield variability, it has been assumed that its magnitude and its effect on crop production have not changed through time and, hence, that changes to yield variability have been due to non-climatic factors. We address this assumption by jointly examining yield and climate variability for three major crops (rice, wheat and maize) over the past 50 years. National yield time series and growing season temperature and precipitation were de-trended and related using multiple linear regression. Yield variability changed significantly in half of the crop–country combinations examined. For several crop–country combinations, changes in yield variability were related to changes in climate variability.
Resumo:
We discuss the modeling of dielectric responses of electromagnetically excited networks which are composed of a mixture of capacitors and resistors. Such networks can be employed as lumped-parameter circuits to model the response of composite materials containing conductive and insulating grains. The dynamics of the excited network systems are studied using a state space model derived from a randomized incidence matrix. Time and frequency domain responses from synthetic data sets generated from state space models are analyzed for the purpose of estimating the fraction of capacitors in the network. Good results were obtained by using either the time-domain response to a pulse excitation or impedance data at selected frequencies. A chemometric framework based on a Successive Projections Algorithm (SPA) enables the construction of multiple linear regression (MLR) models which can efficiently determine the ratio of conductive to insulating components in composite material samples. The proposed method avoids restrictions commonly associated with Archie’s law, the application of percolation theory or Kohlrausch-Williams-Watts models and is applicable to experimental results generated by either time domain transient spectrometers or continuous-wave instruments. Furthermore, it is quite generic and applicable to tomography, acoustics as well as other spectroscopies such as nuclear magnetic resonance, electron paramagnetic resonance and, therefore, should be of general interest across the dielectrics community.
Resumo:
Wine production is largely governed by atmospheric conditions, such as air temperature and precipitation, together with soil management and viticultural/enological practices. Therefore, anthropogenic climate change is likely to have important impacts on the winemaking sector worldwide. An important winemaking region is the Portuguese Douro Valley, which is known by its world-famous Port Wine. The identification of robust relationships between atmospheric factors and wine parameters is of great relevance for the region. A multivariate linear regression analysis of a long wine production series (1932–2010) reveals that high rainfall and cool temperatures during budburst, shoot and inflorescence development (February-March) and warm temperatures during flowering and berry development (May) are generally favourable to high production. The probabilities of occurrence of three production categories (low, normal and high) are also modelled using multinomial logistic regression. Results show that both statistical models are valuable tools for predicting the production in a given year with a lead time of 3–4 months prior to harvest. These statistical models are applied to an ensemble of 16 regional climate model experiments following the SRES A1B scenario to estimate possible future changes. Wine production is projected to increase by about 10 % by the end of the 21st century, while the occurrence of high production years is expected to increase from 25 % to over 60 %. Nevertheless, further model development will be needed to include other aspects that may shape production in the future. In particular, the rising heat stress and/or changes in ripening conditions could limit the projected production increase in future decades.
Resumo:
The occurrence of mid-latitude windstorms is related to strong socio-economic effects. For detailed and reliable regional impact studies, large datasets of high-resolution wind fields are required. In this study, a statistical downscaling approach in combination with dynamical downscaling is introduced to derive storm related gust speeds on a high-resolution grid over Europe. Multiple linear regression models are trained using reanalysis data and wind gusts from regional climate model simulations for a sample of 100 top ranking windstorm events. The method is computationally inexpensive and reproduces individual windstorm footprints adequately. Compared to observations, the results for Germany are at least as good as pure dynamical downscaling. This new tool can be easily applied to large ensembles of general circulation model simulations and thus contribute to a better understanding of the regional impact of windstorms based on decadal and climate change projections.
Resumo:
We introduce a novel technique in which linear regression analysis is applied to clusters of tracked cyclones to statistically assess the factors controlling cyclone development. We illustrate this technique by evaluating the differences between cyclones forming in the west and east North Atlantic (herein termed west and east Atlantic cyclones). Enhanced cyclone intensity 2 days after genesis is found to be associated with deeper upper-level troughs upstream of the cyclone center at the genesis time in both west and east Atlantic cyclones. However, whilst west Atlantic cyclones are also enhanced by the presence of strong fronts, east Atlantic cyclones are not. Instead, east Atlantic cyclones exhibit an enhancement when diabatically generated midlevel potential vorticity is present (with the enhancement being of approximately equal magnitude to that associated with the potential vorticity in the upper-level trough). This is consistent with the paradigm of latent heat release in the warm conveyor belt region playing an important role in the development of east Atlantic cyclones.
Resumo:
Many applications, such as intermittent data assimilation, lead to a recursive application of Bayesian inference within a Monte Carlo context. Popular data assimilation algorithms include sequential Monte Carlo methods and ensemble Kalman filters (EnKFs). These methods differ in the way Bayesian inference is implemented. Sequential Monte Carlo methods rely on importance sampling combined with a resampling step, while EnKFs utilize a linear transformation of Monte Carlo samples based on the classic Kalman filter. While EnKFs have proven to be quite robust even for small ensemble sizes, they are not consistent since their derivation relies on a linear regression ansatz. In this paper, we propose another transform method, which does not rely on any a priori assumptions on the underlying prior and posterior distributions. The new method is based on solving an optimal transportation problem for discrete random variables. © 2013, Society for Industrial and Applied Mathematics
Resumo:
An extensive data set of total arsenic analysis for 901 polished (white) grain samples, originating from 10 countries from 4 continents, was compiled. The samples represented the baseline (i.e., not specifically collected from arsenic contaminated areas), and all were for market sale in major conurbations. Median total arsenic contents of rice varied 7-fold, with Egypt (0.04 mg/kg) and India (0.07 mg/kg) having the lowest arsenic content while the U.S. (0.25 mg/kg) and France (0.28 mg/kg) had the highest content. Global distribution of total arsenic in rice was modeled by weighting each country’s arsenic distribution by that country’s contribution to global production. A subset of 63 samples from Bangladesh, China, India, Italy, and the U.S. was analyzed for arsenic species. The relationship between inorganic arsenic content versus total arsenic content significantly differed among countries, with Bangladesh and India having the steepest slope in linear regression, and the U.S. having the shallowest slope. Using country-specific rice consumption data, daily intake of inorganic arsenic was estimated and the associated internal cancer risk was calculated using the U.S. Environmental Protection Agency (EPA) cancer slope. Median excess internal cancer risks posed by inorganic arsenic ranged 30-fold for the 5 countries examined, being 0.7 per 10,000 for Italians to 22 per 10,000 for Bangladeshis, when a 60 kg person was considered.
Resumo:
We present a method for deriving the radiative effects of absorbing aerosols in cloudy scenes from satellite retrievals only. We use data of 2005–2007 from various passive sensors aboard satellites of the “A-Train” constellation. The study area is restricted to the tropical- and subtropical Atlantic Ocean. To identify the dependence of the local planetary albedo in cloudy scenes on cloud liquid water path and aerosol optical depth (AOD), we perform a multiple linear regression. The OMI UV-Aerosolindex serves as an indicator for absorbing-aerosol presence. In our method, the aerosol influences the local planetary albedo through direct- (scattering and absorption) and indirect (Twomey) aerosol effects. We find an increase of the local planetary albedo (LPA) with increasing AOD of mostly scattering aerosol and a decrease of the LPA with increasing AOD of mostly absorbing aerosol. These results allow us to derive the direct aerosol effect of absorbing aerosols in cloudy scenes, with the effect of cloudy-scene aerosol absorption in the tropical- and subtropical Atlantic contributing (+21.2±11.1)×10−3 Wm−2 to the global top of the atmosphere radiative forcing.
Resumo:
BACKGROUND: Genetic polymorphisms of transcription factor 7-like 2 (TCF7L2) have been associated with type 2 diabetes and BMI. OBJECTIVE: The objective was to investigate whether TCF7L2 HapA is associated with weight development and whether such an association is modulated by protein intake or by the glycemic index (GI). DESIGN: The investigation was based on prospective data from 5 cohort studies nested within the European Prospective Investigation into Cancer and Nutrition. Weight change was followed up for a mean (±SD) of 6.8 ± 2.5 y. TCF7L2 rs7903146 and rs10885406 were successfully genotyped in 11,069 individuals and used to derive HapA. Multiple logistic and linear regression analysis was applied to test for the main effect of HapA and its interaction with dietary protein or GI. Analyses from the cohorts were combined by random-effects meta-analysis. RESULTS: HapA was associated neither with baseline BMI (0.03 ± 0.07 BMI units per allele; P = 0.6) nor with annual weight change (8.8 ± 11.7 g/y per allele; P = 0.5). However, a previously shown positive association between intake of protein, particularly of animal origin, and subsequent weight change in this population proved to be attenuated by TCF7L2 HapA (P-interaction = 0.01). We showed that weight gain becomes independent of protein intake with an increasing number of HapA alleles. Substitution of protein with either fat or carbohydrates showed the same effects. No interaction with GI was observed. CONCLUSION: TCF7L2 HapA attenuates the positive association between animal protein intake and long-term body weight change in middle-aged Europeans but does not interact with the GI of the diet.
Resumo:
BACKGROUND: Differences in the interindividual response to dietary intervention could be modified by genetic variation in nutrient-sensitive genes. OBJECTIVE: This study examined single nucleotide polymorphisms (SNPs) in presumed nutrient-sensitive candidate genes for obesity and obesity-related diseases for main and dietary interaction effects on weight, waist circumference, and fat mass regain over 6 mo. DESIGN: In total, 742 participants who had lost ≥ 8% of their initial body weight were randomly assigned to follow 1 of 5 different ad libitum diets with different glycemic indexes and contents of dietary protein. The SNP main and SNP-diet interaction effects were analyzed by using linear regression models, corrected for multiple testing by using Bonferroni correction and evaluated by using quantile-quantile (Q-Q) plots. RESULTS: After correction for multiple testing, none of the SNPs were significantly associated with weight, waist circumference, or fat mass regain. Q-Q plots showed that ALOX5AP rs4769873 showed a higher observed than predicted P value for the association with less waist circumference regain over 6 mo (-3.1 cm/allele; 95% CI: -4.6, -1.6; P/Bonferroni-corrected P = 0.000039/0.076), independently of diet. Additional associations were identified by using Q-Q plots for SNPs in ALOX5AP, TNF, and KCNJ11 for main effects; in LPL and TUB for glycemic index interaction effects on waist circumference regain; in GHRL, CCK, MLXIPL, and LEPR on weight; in PPARC1A, PCK2, ALOX5AP, PYY, and ADRB3 on waist circumference; and in PPARD, FABP1, PLAUR, and LPIN1 on fat mass regain for dietary protein interaction. CONCLUSION: The observed effects of SNP-diet interactions on weight, waist, and fat mass regain suggest that genetic variation in nutrient-sensitive genes can modify the response to diet. This trial was registered at clinicaltrials.gov as NCT00390637.
Resumo:
BACKGROUND: Single nucleotide polymorphisms (SNPs) in genes encoding the components involved in the hypothalamic pathway may influence weight gain and dietary factors may modify their effects. AIM: We conducted a case-cohort study to investigate the associations of SNPs in candidate genes with weight change during an average of 6.8 years of follow-up and to examine the potential effect modification by glycemic index (GI) and protein intake. METHODS AND FINDINGS: Participants, aged 20-60 years at baseline, came from five European countries. Cases ('weight gainers') were selected from the total eligible cohort (n = 50,293) as those with the greatest unexplained annual weight gain (n = 5,584). A random subcohort (n = 6,566) was drawn with the intention to obtain an equal number of cases and noncases (n = 5,507). We genotyped 134 SNPs that captured all common genetic variation across the 15 candidate genes; 123 met the quality control criteria. Each SNP was tested for association with the risk of being a 'weight gainer' (logistic regression models) in the case-noncase data and with weight gain (linear regression models) in the random subcohort data. After accounting for multiple testing, none of the SNPs was significantly associated with weight change. Furthermore, we observed no significant effect modification by dietary factors, except for SNP rs7180849 in the neuromedin β gene (NMB). Carriers of the minor allele had a more pronounced weight gain at a higher GI (P = 2 x 10⁻⁷). CONCLUSIONS: We found no evidence of association between SNPs in the studied hypothalamic genes with weight change. The interaction between GI and NMB SNP rs7180849 needs further confirmation.
Resumo:
The aim of the study was to assess the relation of adiponectin levels with the metabolic syndrome in Asian Indians, a high-risk group for diabetes and premature coronary artery disease. The study was conducted on 100 (50 men and 50 women) type 2 diabetic subjects and 100 age and sex matched subjects with normal glucose tolerance selected from the Chennai Urban Rural Epidemiology Study, an ongoing population study in Chennai in southern India. Metabolic syndrome was defined using modified Adult Treatment Panel III (ATPIII) guidelines. Adiponectin values were significantly lower in diabetic subjects (men: 5.2 vs 8.3 microg/mL, P=.00l; women: 7.6 vs 11.1 microg/mL, P<.00l) and those with the metabolic syndrome (men: 5.0 vs 6.8 microg/mL, P=.01; women: 6.5 vs 9.9 microg/mL, P=.001) compared with those without. Linear regression analysis revealed adiponectin to be associated with body mass index (P<.05), waist circumference (P<.01), fasting plasma glucose (P=.001), glycated hemoglobin (P<.001), triglycerides (P<.00l), high-density lipoprotein (HDL) cholesterol (P<.001), cholesterol/HDL ratio (P<.00l), and insulin resistance measured by homeostasis assessment model (P<.00l). Factor analysis identified 2 factors: factor 1, negatively loaded with adiponectin and HDL cholesterol and positively loaded with triglycerides, waist circumference, and insulin resistance measured by homeostasis assessment model; and factor 2, with a positive loading of waist circumference and systolic and diastolic blood pressure. Logistic regression analysis revealed adiponectin to be negatively associated with metabolic syndrome (odds ratio [OR], 0.365; P<.001) even after adjusting for age (OR, 0.344; P<.00l), sex (OR, 0.293; P<.001), and body mass index (OR, 0.292; P<.00l). Lower adiponectin levels are associated with the metabolic syndrome per se and several of its components, particularly, diabetes, insulin resistance, and dyslipidemia in this urban south Indian population.
Resumo:
We analysed single nucleotide polymorphisms (SNPs) tagging the genetic variability of six candidate genes (ATF6, FABP1, LPIN2, LPIN3, MLXIPL and MTTP) involved in the regulation of hepatic lipid metabolism, an important regulatory site of energy balance for associations with body mass index (BMI) and changes in weight and waist circumference. We also investigated effect modification by sex and dietary intake. Data of 6,287 individuals participating in the European prospective investigation into cancer and nutrition were included in the analyses. Data on weight and waist circumference were followed up for 6.9 ± 2.5 years. Association of 69 tagSNPs with baseline BMI and annual changes in weight as well as waist circumference were investigated using linear regression analysis. Interactions with sex, GI and intake of carbohydrates, fat as well as saturated, monounsaturated and polyunsaturated fatty acids were examined by including multiplicative SNP-covariate terms into the regression model. Neither baseline BMI nor annual weight or waist circumference changes were significantly associated with variation in the selected genes in the entire study population after correction for multiple testing. One SNP (rs1164) in LPIN2 appeared to be significantly interacting with sex (p = 0.0003) and was associated with greater annual weight gain in men (56.8 ± 23.7 g/year per allele, p = 0.02) than in women (-25.5 ± 19.8 g/year per allele, p = 0.2). With respect to gene-nutrient interaction, we could not detect any significant interactions when accounting for multiple testing. Therefore, out of our six candidate genes, LPIN2 may be considered as a candidate for further studies.
Resumo:
AIM: 25-hydroxyvitamin D (25OHD) concentrations have been shown to be associated with major clinical outcomes, with a suggestion that individual risk may vary according to common genetic differences in the vitamin D receptor (VDR) gene. Hence, we tested for the interactions between two previously studied VDR polymorphisms and 25OHD on metabolic and cardiovascular disease-related outcomes in a large population-based study. METHODS: Interactions between two previously studied VDR polymorphisms (rs7968585 and rs2239179) and 25OHD concentrations on metabolic and cardiovascular disease-related outcomes such as obesity- (body mass index, waist circumference, waist-hip ratio (WHR)), cardiovascular- (systolic and diastolic blood pressure), lipid- (high- and low-density lipoprotein, triglycerides, total cholesterol), inflammatory- (C-reactive protein, fibrinogen, insulin growth factor-1, tissue plasminogen activator) and diabetes- (glycated haemoglobin) related markers were examined in the 1958 British Birth cohort (n up to 5160). Interactions between each SNP and 25OHD concentrations were assessed using linear regression and the likelihood ratio test. RESULTS: After Bonferroni correction, none of the interactions reached statistical significance except for the interaction between the VDR SNP rs2239179 and 25OHD concentrations on waist-hip ratio (WHR) (P=0.03). For every 1nmol/L higher 25OHD concentrations, the association with WHR was stronger among those with two major alleles (-4.0%, P=6.26e-24) compared to those with either one or no major alleles (-2.3%, P≤8.201e-07, for both) of the VDR SNP rs2239179. CONCLUSION: We found no evidence for VDR polymorphisms acting as major modifiers of the association between 25OHD concentrations and cardio-metabolic risk. Interaction between VDR SNP rs2239179 and 25OHD on WHR warrants further confirmation.