987 resultados para Sex (Biology)
Resumo:
Ataxia with vitamin E deficiency is caused by mutations in a-tocopherol transfer protein (a-TTP) gene and it can be experimentally generated in mice by a-TTP gene inactivation (a-TTP-KO). This study compared a-tocopherol (a-T) concentrations of five brain regions and of four peripheral organs from 5 months old, male and female, wild-type (WT) and a-TTP-KO mice. All brain regions of female WT mice contained significantly higher a-T than those from WT males. a-T concentration in the cerebellum was significantly lower than that in other brain regions of WT mice. These sex and regional differences in brain a-T concentrations do not appear to be determined by a-TTP expression which was undetectable in all brain regions. All the brain regions of a-TTP-KO mice were severely depleted in a-T. The concentration of another endogenous antioxidant, total glutathione, was unaffected by gender but was decreased slightly but significantly in most brain regions of a-TTP-KO mice. The results show that both gender and the hepatic a-TTP, but not brain a-TTP gene expression are important in determining a-T concentrations within the brain. Interestingly, functional abnormality (ataxia) develops only very late in a-TTP-KO mice in spite of the severe a-tocopherol deficiency in the brain starting at an early age.
Resumo:
The reproductive biology of two species of endemic Southern Ocean octopods was investigated around the sub-Antarctic islands of South Georgia and Shag Rocks. The females of both the species produce few, large eggs. This appears to be governed by phylogenetic constraint. No evidence was found for ontogenetic migration or seasonality associated with gonad maturation. Based on oocyte length frequency distributions and observations of oocyte development within the ovary, it is possible that both species could have either a single or multiple-batch spawning strategy. Pareledone turqueti ovaries contained fewer larger oocytes than those of Adefieledone polymorpha, which may help to reduce competition for resources immediately after hatching.
Resumo:
Uses counterfactual history to argue that Darwin had a unique impact on the development of moern biology.
Resumo:
Several studies have assessed changes in frequency of -174 interleukin (IL)-6 single nucleotide polymorphism (SNP) with age. If IL-6 tracks with disability and age-related diseases, then there should be reduction, in the oldest old, of the frequency of homozgyous GG subjects, who produce higher IL-6 levels. However, discordant results have been obtained. To explore the relationship between this polymorphism and longevity, we analyzed individual data on long-living subjects and controls from eight case-control studies conducted in Europeans, using meta-analysis. There was no significant difference in the IL-6 genotype between the oldest old and controls (Odds Ratio [OR]=0.96; 95% C.I.: 0.77-1.20; p=0.71), but there was significant between-study heterogeneity (I(2)=55.5%). In a subgroup analyses when male centenarians from the three Italian studies were included, the frequency of the IL-6 -174 GG genotype was significantly lower than the other genotypes (OR=0.49; 95% C.I.: 0.31-0.80; p=0.004), with no evidence of heterogeneity (I(2)=0%). Our data supports a negative association between the GG genotype of IL-6 SNP and longevity in Italian centenarians, with males who carry the genotype being two times less likely to reach extreme old age compared with subjects carrying CC or CG genotypes. These findings were not replicated in other European groups suggesting a possible interaction between genetics, sex and environment in reaching longevity.
Interferon gamma allelic variants: sex-biased multiple sclerosis susceptibility and gene expression.
Resumo:
Current understanding of risk associated with low-dose radiation exposure has for many years been embedded in the linear-no-threshold (LNT) approach, based on simple extrapolation from the Japanese atomic bomb survivors. Radiation biology research has supported the LNT approach although much of this has been limited to relatively high-dose studies. Recently, with new advances for studying effects of low-dose exposure in experimental models and advances in molecular and cellular biology, a range of new effects of biological responses to radiation has been observed. These include genomic instability, adaptive responses and bystander effects. Most have one feature in common in that they are observed at low doses and suggest significant non-linear responses. These new observations pose a significant challenge to our understanding of low-dose exposure and require further study to elucidate mechanisms and determine their relevance.