985 resultados para Semantic features matrix
Resumo:
A Brazilian female infant presented delayed psychomotor development, skin pigmentary dysplasia and some dysmorphic features. Chromosome analysis from peripheral blood culture was normal, but the karyotype from skin fibroblasts revealed mosaicism for trisomy 13. This case demonstrates the relevance of performing chromosomal analysis of skin fibroblasts in patients with mental retardation, associated with pigmentary dysplasia of the skin and a normal karyotype in peripheral blood lymphocytes. To our knowledge, it is the first report of trisomy 13 demonstrated only in skin fibroblasts.
Resumo:
The binding capacity of concanavalin A (Con A) to condensed euchromatin and heterochromatin was investigated in chicken erythrocyte nuclei (CEN), mouse liver cells, Zea mays mays meristematic cells and Drosophila melanogaster polytene chromosomes after 4 N HCl hydrolysis to determine whether binding was preferentially occurring in bands and heterochromatin. Dry mass (DM) variation was investigated in CEN by interference microscopy. Feulgen and Con A reactions were employed for all materials to correlate the loci of the two reactions. Quantifications and topological verifications were carried out by video image analysis (high performance cytometry). It was observed that 4 N HCl hydrolysis caused an important DM loss in CEN leaving a level corresponding to the average DNA DM content. In this material, Con A binding was restricted to the nuclear envelope, which reinforces the idea of the absence of a nuclear matrix in these cells. The other cell types exhibited a correspondence of Feulgen-positive and Con A-reactive areas. The Con A reaction was highly positive in the condensed chromatin areas and heterochromatin. This fact led us to speculate that Con A-positive proteins may play a role in the chromatin condensation mechanism, endowing this structure with physico-chemical stability towards acid hydrolysis and contributing to its rheological properties.
Resumo:
Metric features and modular and laminar distributions of intrinsic projections of area 17 were studied in Cebus apella. Anterogradely and retrogradely labeled cell appendages were obtained using both saturated pellets and iontophoretic injections of biocytin into the operculum. Laminar and modular distributions of the labeled processes were analyzed using Nissl counterstaining, and/or cytochrome oxidase and/or NADPH-diaphorase histochemistry. We distinguished three labeled cell types: pyramidal, star pyramidal and stellate cells located in supragranular cortical layers (principally in layers IIIa, IIIb a, IIIb ß and IIIc). Three distinct axon terminal morphologies were found, i.e., Ia, Ib and II located in granular and supragranular layers. Both complete and partial segregation of group I axon terminals relative to the limits of the blobs of V1 were found. The results are compatible with recent evidence of incomplete segregation of visual information flow in V1 of Old and New World primates
Resumo:
Ultrastructural phenotypic transitional features were noted between adult adipocytes and fibroblasts in the subcutaneous adipose tissue of the dorsal pad of normal adult Wistar rats of both sexes, weighing 180-260 g, after acute injury either by the implantation of small (1.8 x 1 x 0.4 cm) perforated plastic boxes or by local heat application. Soon after the inflicted damage, fat-containing cells presented variable shapes. Early after damage, some of these cells were round, adipocyte-like, with numerous and large cytoplasmic fat droplets. A few days later, fat-containing cells became elongated, with the fat droplets in their cytoplasm becoming smaller and less numerous. The cells also showed a prominent active rough endoplasmic reticulum and newly formed collagenous matrix accumulated in the interstices. Although current views consider adult adipocytes to be terminal cells, the present findings, in their time sequence, strongly suggest the transformation of adipocytes into fibroblasts after acute injury to adipose tissue.
Resumo:
DNA-based immunization has initiated a new era of vaccine research. One of the main goals of gene vaccine development is the control of the levels of expression in vivo for efficient immunization. Modifying the vector to modulate expression or immunogenicity is of critical importance for the improvement of DNA vaccines. The most frequently used vectors for genetic immunization are plasmids. In this article, we review some of the main elements relevant to their design such as strong promoter/enhancer region, introns, genes encoding antigens of interest from the pathogen (how to choose and modify them), polyadenylation termination sequence, origin of replication for plasmid production in Escherichia coli, antibiotic resistance gene as selectable marker, convenient cloning sites, and the presence of immunostimulatory sequences (ISS) that can be added to the plasmid to enhance adjuvanticity and to activate the immune system. In this review, the specific modifications that can increase overall expression as well as the potential of DNA-based vaccination are also discussed.
Resumo:
The thymus contains an extensive extracellular matrix. Although thymocytes express integrins capable of binding to matrix molecules, the functional significance of the matrix for T cell development is uncertain. We have shown that the matrix is associated with thymic fibroblasts which are required for the CD44+ CD25+ stage of double negative (CD4-8-) thymocyte development. The survival of cells at this stage is dependent on IL-7 and we propose that the role of fibroblasts is to present, via the matrix, IL-7 to developing T cells.
Resumo:
Alterations in extracellular matrix (ECM) expression in the central nervous system (CNS) usually associated with inflammatory lesions have been described in several pathological situations including neuroblastoma and demyelinating diseases. The participation of fibronectin (FN) and its receptor, the VLA-4 molecule, in the migration of inflammatory cells into the CNS has been proposed. In Trypanosoma cruzi infection encephalitis occurs during the acute phase, whereas in Toxoplasma infection encephalitis is a chronic persisting process. In immunocompromised individuals such as AIDS patients, T. cruzi or T. gondii infection can lead to severe CNS damage. At the moment, there are no data available regarding the molecules involved in the entrance of inflammatory cells into the CNS during parasitic encephalitis. Herein, we characterized the expression of the ECM components FN and laminin (LN) and their receptors in the CNS of T. gondii- and T. cruzi-infected mice. An increased expression of FN and LN was detected in the meninges, leptomeninges, choroid plexus and basal lamina of blood vessels. A fine FN network was observed involving T. gondii-free and T. gondii-containing inflammatory infiltrates. Moreover, perivascular spaces presenting a FN-containing filamentous network filled with a4+ and a5+ cells were observed. Although an increased expression of LN was detected in the basal lamina of blood vessels, the CNS inflammatory cells were a6-negative. Taken together, our results suggest that FN and its receptors VLA-4 and VLA-5 might be involved in the entrance, migration and retention of inflammatory cells into the CNS during parasitic infections.
Resumo:
As a result of recent investigations, the cytoskeleton can be viewed as a cytoplasmic system of interconnected filaments with three major integrative levels: self-assembling macromolecules, filamentous polymers, e.g., microtubules, intermediate filaments and actin filaments, and supramolecular structures formed by bundles of these filaments or networks resulting from cross-bridges between these major cytoskeletal polymers. The organization of this biological structure appears to be sensitive to fine spatially and temporally dependent regulatory signals. In differentiating neurons, regulation of cytoskeleton organization is particularly relevant, and the microtubule-associated protein (MAP) tau appears to play roles in the extension of large neuritic processes and axons as well as in the stabilization of microtubular polymers along these processes. Within this context, tau is directly involved in defining neuronal polarity as well as in the generation of neuronal growth cones. There is increasing evidence that elements of the extracellular matrix contribute to the control of cytoskeleton organization in differentiating neurons, and that these regulations could be mediated by changes in MAP activity. In this brief review, we discuss the possible roles of tau in mediating the effects of extracellular matrix components on the internal cytoskeletal arrays and its organization in growing neurons.
Resumo:
Axon growth and guidance represent complex biological processes in which probably intervene diverse sets of molecular cues that allow for the appropriate wiring of the central nervous system (CNS). The extracellular matrix (ECM) represents a major contributor of molecular signals either diffusible or membrane-bound that may regulate different stages of neural development. Some of the brain ECM molecules form tridimensional structures (tunnels and boundaries) that appear during time- and space-regulated events, possibly playing relevant roles in the control of axon elongation and pathfinding. This short review focuses mainly on the recognized roles played by proteoglycans, laminin, fibronectin and tenascin in axonal development during ontogenesis.
Resumo:
The pathogenic fungus Sporothrix schenckii is the causative agent of sporotrichosis. This subcutaneous mycosis may disseminate in immunocompromised individuals and also affect several internal organs and tissues, most commonly the bone, joints and lung. Since adhesion is the first step involved with the dissemination of pathogens in the host, we have studied the interaction between S. schenckii and several extracellular matrix (ECM) proteins. The binding of two morphological phases of S. schenckii, yeast cells and conidia, to immobilized type II collagen, laminin, fibronectin, fibrinogen and thrombospondin was investigated. Poly (2-hydroxyethyl methacrylate) (poly-HEMA) was used as the negative control. Cell adhesion was assessed by ELISA with a rabbit anti-S. schenckii antiserum. The results indicate that both morphological phases of this fungus can bind significantly to type II collagen, fibronectin and laminin in comparison to the binding observed with BSA (used as blocking agent). The adhesion rate observed with the ECM proteins (type II collagen, fibronectin and laminin) was statistically significant (P<0.05) when compared to the adhesion obtained with BSA. No significant binding of conidia was observed to either fibrinogen or thrombospondin, but yeast cells did bind to the fibrinogen. Our results indicate that S. schenckii can bind to fibronectin, laminin and type II collagen and also show differences in binding capacity according to the morphological form of the fungus.
Resumo:
Cell interactions with extracellular matrices are important to pathological changes that occur during cell transformation and tumorigenesis. Several extracellular matrix proteins including fibronectin, thrombospondin-1, laminin, SPARC, and osteopontin have been suggested to modulate tumor phenotype by affecting cell migration, survival, or angiogenesis. Likewise, proteases including the matrix metalloproteinases (MMPs) are understood to not only facilitate migration of cells by degradation of matrices, but also to affect tumor formation and growth. We have recently demonstrated an in vivo role for the RGD-containing protein, osteopontin, during tumor progression, and found evidence for distinct functions in the host versus the tumor cells. Because of the compartmentalization and temporal regulation of MMP expression, it is likely that MMPs may also function dually in host stroma and the tumor cell. In addition, an important function of proteases appears to be not only degradation, but also cleavage of matrix proteins to generate functionally distinct fragments based on receptor binding, biological activity, or regulation of growth factors.
Resumo:
The objective of the present study was to determine the effect of protein malnutrition on the glycoprotein content of bone marrow extracellular matrix (ECM). Two-month-old male Swiss mice were submitted to protein malnutrition with a low-protein diet containing 4% casein as compared to 20% casein in the control diet. When the experimental group had attained a 20% loss of their original body weight, we extracted the ECM proteins from bone marrow with PBS buffer, and analyzed ECM samples by SDS-PAGE (7.5%) and ECL Western blotting. Quantitative differences were observed between control and experimental groups. Bone marrow ECM from undernourished mice had greater amounts of extractable fibronectin (1.6-fold increase) and laminin (4.8-fold increase) when compared to the control group. These results suggest an association between fluctuations in the composition of the hematopoietic microenvironment and altered hematopoiesis observed in undernourished mice.
Resumo:
The recently cloned extracellular calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays an essential role in the regulation of extracellular calcium homeostasis. This receptor is expressed in all tissues related to this control (parathyroid glands, thyroid C-cells, kidneys, intestine and bones) and also in tissues with apparently no role in the maintenance of extracellular calcium levels, such as brain, skin and pancreas. The CaR amino acid sequence is compatible with three major domains: a long and hydrophilic aminoterminal extracellular domain, where most of the activating and inactivating mutations described to date are located and where the dimerization process occurs, and the agonist-binding site is located, a hydrophobic transmembrane domain involved in the signal transduction mechanism from the extracellular domain to its respective G protein, and a carboxyterminal intracellular tail, with a well-established role for cell surface CaR expression and for signal transduction. CaR cloning was immediately followed by the association of genetic human diseases with inactivating and activating CaR mutations: familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism are caused by CaR-inactivating mutations, whereas autosomal dominant hypoparathyroidism is secondary to CaR-activating mutations. Finally, we will comment on the development of drugs that modulate CaR function by either activating (calcimimetic drugs) or antagonizing it (calcilytic drugs), and on their potential therapeutic implications, such as medical control of specific cases of primary and uremic hyperparathyroidism with calcimimetic drugs and a potential treatment for osteoporosis with a calcilytic drug.
Resumo:
Extracellular matrix (ECM) molecules play important roles in the pathobiology of the major human central nervous system (CNS) inflammatory/demyelinating disease multiple sclerosis (MS). This mini-review highlights some recent work on CNS endothelial cell interactions with vascular basement membrane ECM as part of the cellular immune response, and roles for white matter ECM molecules in demyelination and remyelination in MS lesions. Recent basic and clinical investigations of MS emphasize axonal injury, not only in chronic MS plaques, but also in acute lesions; progressive axonal degeneration in normal-appearing white matter also may contribute to brain and spinal cord atrophy in MS patients. Remodeling of the interstitial white matter ECM molecules that affect axon regeneration, however, is incompletely characterized. Our ongoing immunohistochemical studies demonstrate enhanced ECM versican, a neurite and axon growth-inhibiting white matter ECM proteoglycan, and dermatan sulfate proteoglycans at the edges of inflammatory MS lesions. This suggests that enhanced proteoglycan deposition in the ECM and axonal growth inhibition may occur early and are involved in expansion of active lesions. Decreased ECM proteoglycans and their phagocytosis by macrophages along with myelin in plaque centers imply that there is "injury" to the ECM itself. These results indicate that white matter ECM proteoglycan alterations are integral to MS pathology at all disease stages and that they contribute to a CNS ECM that is inhospitable to axon regrowth/regeneration.