998 resultados para Semantic Modeling
Resumo:
Current measures used to estimate the risks of toxic chemicals are not relevant to the goals of the environmental protection process, and thus ecological risk assessment (ERA) is not used as extensively as it should be as a basis for cost-effective management of environmental resources. Appropriate population models can provide a powerful basis for expressing ecological risks that better inform the environmental management process and thus that are more likely to be used by managers. Here we provide at least five reasons why population modeling should play an important role in bridging the gap between what we measure and what we want to protect. We then describe six actions needed for its implementation into management-relevant ERA.
Resumo:
Novel imaging techniques are playing an increasingly important role in drug development, providing insight into the mechanism of action of new chemical entities. The data sets obtained by these methods can be large with complex inter-relationships, but the most appropriate statistical analysis for handling this data is often uncertain - precisely because of the exploratory nature of the way the data are collected. We present an example from a clinical trial using magnetic resonance imaging to assess changes in atherosclerotic plaques following treatment with a tool compound with established clinical benefit. We compared two specific approaches to handle the correlations due to physical location and repeated measurements: two-level and four-level multilevel models. The two methods identified similar structural variables, but higher level multilevel models had the advantage of explaining a greater proportion of variation, and the modeling assumptions appeared to be better satisfied.
Resumo:
Software representations of scenes, i.e. the modelling of objects in space, are used in many application domains. Current modelling and scene description standards focus on visualisation dimensions, and are intrinsically limited by their dependence upon their semantic interpretation and contextual application by humans. In this paper we propose the need for an open, extensible and semantically rich modelling language, which facilitates a machine-readable semantic structure. We critically review existing standards and techniques, and highlight a need for a semantically focussed scene description language. Based on this defined need we propose a preliminary solution, based on hypergraph theory, and reflect on application domains.
Resumo:
This paper examines the interaction of spatial and dynamic aspects of resource extraction from forests by local people. Highly cyclical and varied across space and time, the patterns of resource extraction resulting from the spatial–temporal model bear little resemblance to the patterns drawn from focusing either on spatial or temporal aspects of extraction alone. Ignoring this variability inaccurately depicts villagers’ dependence on different parts of the forest and could result in inappropriate policies. Similarly, the spatial links in extraction decisions imply that policies imposed in one area can have unintended consequences in other areas. Combining the spatial–temporal model with a measure of success in community forest management—the ability to avoid open-access resource degradation—characterizes the impact of incomplete property rights on patterns of resource extraction and stocks.
Resumo:
The requirement to forecast volcanic ash concentrations was amplified as a response to the 2010 Eyjafjallajökull eruption when ash safety limits for aviation were introduced in the European area. The ability to provide accurate quantitative forecasts relies to a large extent on the source term which is the emissions of ash as a function of time and height. This study presents source term estimations of the ash emissions from the Eyjafjallajökull eruption derived with an inversion algorithm which constrains modeled ash emissions with satellite observations of volcanic ash. The algorithm is tested with input from two different dispersion models, run on three different meteorological input data sets. The results are robust to which dispersion model and meteorological data are used. Modeled ash concentrations are compared quantitatively to independent measurements from three different research aircraft and one surface measurement station. These comparisons show that the models perform reasonably well in simulating the ash concentrations, and simulations using the source term obtained from the inversion are in overall better agreement with the observations (rank correlation = 0.55, Figure of Merit in Time (FMT) = 25–46%) than simulations using simplified source terms (rank correlation = 0.21, FMT = 20–35%). The vertical structures of the modeled ash clouds mostly agree with lidar observations, and the modeled ash particle size distributions agree reasonably well with observed size distributions. There are occasionally large differences between simulations but the model mean usually outperforms any individual model. The results emphasize the benefits of using an ensemble-based forecast for improved quantification of uncertainties in future ash crises.
Resumo:
Purpose: This document identifies the challenges and opportunities in applying the ontology technology in the Human Resources domain. Target users: A reference for both the HR and the ontology communities. Also, to be used as a roadmap for the OOA itself, within the HR domain. Background: During the discussion panel at the OOA kick-off workshop, which was attended by more than 50 HR and ontology experts, the need for this roadmap was realized. It was obvious that the current understanding of the problem of semantics in HR is fragmented and only partial solutions exist. People from both the HR and the ontology communities speak different languages, have different understandings, and are not aware of existing solutions.
Resumo:
This study compared orthographic and semantic aspects of word learning in children who differed in reading comprehension skill. Poor comprehenders and controls matched for age (9-10 years), nonverbal ability and decoding skill were trained to pronounce 20 visually presented nonwords, 10 in a consistent way and 10 in an inconsistent way. They then had an opportunity to infer the meanings of the new words from story context. Orthographic learning was measured in three ways: the number of trials taken to learn to pronounce nonwords correctly, orthographic choice and spelling. Across all measures, consistent items were easier than inconsistent items and poor comprehenders did not differ from control children. Semantic learning was assessed on three occasions, using a nonword-picture matching task. While poor comprehenders showed equivalent semantic learning to controls immediately after exposure to nonword meaning, this knowledge was not well retained over time. Results are discussed in terms of the language and reading skills of poor comprehenders and in relation to current models of reading development.
Resumo:
This study explores how children learn the meaning (semantics) and spelling patterns (orthography) of novel words encountered in story context. English-speaking children (N = 88) aged 7 to 8 years read 8 stories and each story contained 1 novel word repeated 4 times. Semantic cues were provided by the story context such that children could infer the meaning of the word (specific context) or the category that the word belonged to (general context). Following story reading, posttests indicated that children showed reliable semantic and orthographic learning. Decoding was the strongest predictor of orthographic learning, indicating that self-teaching via phonological recoding was important for this aspect of word learning. In contrast, oral vocabulary emerged as the strongest predictor of semantic learning.
Resumo:
To understand the resilience of aquatic ecosystems to environmental change, it is important to determine how multiple, related environmental factors, such as near-surface air temperature and river flow, will change during the next century. This study develops a novel methodology that combines statistical downscaling and fish species distribution modeling, to enhance the understanding of how global climate changes (modeled by global climate models at coarse-resolution) may affect local riverine fish diversity. The novelty of this work is the downscaling framework developed to provide suitable future projections of fish habitat descriptors, focusing particularly on the hydrology which has been rarely considered in previous studies. The proposed modeling framework was developed and tested in a major European system, the Adour-Garonne river basin (SW France, 116,000 km(2)), which covers distinct hydrological and thermal regions from the Pyrenees to the Atlantic coast. The simulations suggest that, by 2100, the mean annual stream flow is projected to decrease by approximately 15% and temperature to increase by approximately 1.2 °C, on average. As consequence, the majority of cool- and warm-water fish species is projected to expand their geographical range within the basin while the few cold-water species will experience a reduction in their distribution. The limitations and potential benefits of the proposed modeling approach are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Resumo:
Benefits and costs on prospective memory performance, of enactment at encoding and a semantic association between a cue-action word pair, were investigated in two experiments. Findings revealed superior performance for both younger and older adults following enactment, in contrast to verbal encoding, and when cue-action semantic relatedness was high. Although younger adults outperformed older adults, age did not moderate benefits of cue-action relatedness or enactment. Findings from a second experiment revealed that the inclusion of an instruction to perform a prospective memory task led to increments in response latency to items from the ongoing activity in which that task was embedded, relative to latencies when the ongoing task only was performed. However, this task interference ‘cost’ did not differ as a function of either cue-action relatedness or enactment. We argue that the high number of cue-action pairs employed here influenced meta-cognitive consciousness, hence determining attention allocation, in all experimental conditions.