994 resultados para Scour (Hydraulic engineering)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the results of a project aimed at creating a research-informed, pedagogically reliable, technology-enhanced learning and teaching environment that would foster engagement with learning. A first-year mathematics for engineering unit offered at a large, metropolitan Australian university provides the context for this research. As part of the project, the unit was redesigned using a framework that employed flexible, modular, connected e-learning and teaching experiences. The researchers, interested in an ecological perspective on educational processes, grounded the redesign principles in probabilistic learning design (Kirschner et al., 2004). The effectiveness of the redesigned environment was assessed through the lens of the notion of affordance (Gibson, 1977,1979, Greeno, 1994, Good, 2007). A qualitative analysis of the questionnaire distributed to students at the end of the teaching period provided insight into factors impacting on the successful creation of an environment that encourages complex, multidimensional and multilayered interactions conducive to learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: This study investigated the ability of an osteoconductive biphasic scaffold to simultaneously regenerate alveolar bone, periodontal ligament and cementum. MATERIALS AND METHODS: A biphasic scaffold was built by attaching a fused deposition modelled bone compartment to a melt electrospun periodontal compartment. The bone compartment was coated with a calcium phosphate (CaP) layer for increasing osteoconductivity, seeded with osteoblasts and cultured in vitro for 6 weeks. The resulting constructs were then complemented with the placement of PDL cell sheets on the periodontal compartment, attached to a dentin block and subcutaneously implanted into athymic rats for 8 weeks. Scanning electron microscopy, X-ray diffraction, alkaline phosphatase and DNA content quantification, confocal laser microscopy, micro computerized tomography and histological analysis were employed to evaluate the scaffold's performance. RESULTS: The in vitro study showed that alkaline phosphatase activity was significantly increased in the CaP-coated samples and they also displayed enhanced mineralization. In the in vivo study, significantly more bone formation was observed in the coated scaffolds. Histological analysis revealed that the large pore size of the periodontal compartment permitted vascularization of the cell sheets, and periodontal attachment was achieved at the dentin interface. CONCLUSIONS: This work demonstrates that the combination of cell sheet technology together with an osteoconductive biphasic scaffold could be utilized to address the limitations of current periodontal regeneration techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flooding of urbanised areas constitutes a hazard to the population and infrastructure. Floods through inundated urban environments have been studied recently and the potential impact of flowing waters on pedestrians is not well known. Herein the stability of individuals in floodwaters is reviewed based upon the re-analysis of detailed field measurements in an inundated section of the central business district of the City of Brisbane (Australia) during the 2011 flood. Detailed water elevation and velocity data were recorded. On-site observations showed some hydrodynamic instability linked to local topographic effects, in the form of a combination of fast turbulent fluctuations and (very) slow fluctuations of water level and velocity associated with surges. The flow conditions in Gardens Point Road was unsafe for individuals and a review of past guidelines suggests that many previous recommendations are over-optimistic and unsafe in real floodwaters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammographic density (MD) is a strong risk factor for breast cancer. It is altered by exogenous endocrine treatments, including hormone replacement therapy and Tamoxifen. Such agents also modify breast cancer (BC) risk. However, the biomolecular basis of how systemic endocrine therapy modifies MD and MD-associated BC risk is poorly understood. This study aims to determine whether our xenograft biochamber model can be used to study the effectiveness of therapies aimed at modulating MD, by examine the effects of Tamoxifen and oestrogen on histologic and radiographic changes in high and low MD tissues maintained within the biochamber model. High and low MD human tissues were precisely sampled under radiographic guidance from prophylactic mastectomy fresh specimens of high-risk women, then inserted into separate vascularized murine biochambers. The murine hosts were concurrently implanted with Tamoxifen, oestrogen or placebo pellets, and the high and low MD biochamber tissues maintained in the murine host environment for 3 months, before the high and low MD biochamber tissues were harvested for histologic and radiographic analyses. The radiographic density of high MD tissue maintained in murine biochambers was decreased in Tamoxifen-treated mice compared to oestrogen-treated mice (p = 0.02). Tamoxifen treatment of high MD tissue in SCID mice led to a decrease in stromal (p = 0.009), and an increase in adipose (p = 0.023) percent areas, compared to placebo-treated mice. No histologic or radiographic differences were observed in low MD biochamber tissue with any treatment. High MD biochamber tissues maintained in mice implanted with Tamoxifen, oestrogen or placebo pellets had dynamic and measurable histologic compositional and radiographic changes. This further validates the dynamic nature of the MD xenograft model, and suggests the biochamber model may be useful for assessing the underlying molecular pathways of Tamoxifen-reduced MD, and in testing of other pharmacologic interventions in a preclinical model of high MD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor-based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO(2)(GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A holistic consideration of innovation and associated activities is still very new to consulting engineering firms. This research will have benefits for both industry and academia. The final outcome of this research is a prioritised decision making innovation model that can be used by consulting engineering firms to make informed decisions by investing in appropriate innovation activities that positively impact project performance. This helps by using an informed approach towards investing rather than 'hit-and-miss' trialling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The micro paddy lysimeter (MPL) was developed and evaluated for its performance to simulate solute transport in paddy environment under laboratory conditions. MPLs were constructed using soil collected from Field Museum Honmachi of Tokyo University of Agriculture and Technology, Japan. For the physical characteristics of the hardpan layer, parameters such as thickness, and soil aggregate size, affecting the percolation rate were studied. For the plow layer, two types of plow soils, sieved and un-sieved soils were compared. The sieved soil plow layer was produced by mixing air-dried soils of different aggregate sizes of D > 9.50, 9.50 ≥ D > 4.75, 4.75 ≥ D > 2.0 mm and D ≤ 2.0 mm at 47.1, 19.5, 20.6, and 12.8%, respectively. The un-sieved plow layer soil was directly used after collecting from the field. Inert tracer was applied to ponding water with controlled boundary conditions to evaluate the reproducibility of the soil hydraulic characteristics. HYDRUS-1D was used to evaluate the movement of bromide tracer in the MPL. The proposed conditions of the MPL were that the hardpan layer can be made from soil aggregates smaller than 0.425 mm with 2 cm thickness and that the plow layer can be prepared with sieved or un-sieved soils. With these conditions, the obtained results proved that MPLs can be a useful tool to simulate solute transport in paddy environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of five illicit drug markers in wastewater was tested under different sewer conditions using laboratory-scale sewer reactors. Wastewater was spiked with deuterium labelled isotopes of cocaine, benzoyl ecgonine, methamphetamine, MDMA and 6-acetyl morphine to avoid interference from the native isotopes already present in the wastewater matrix. The sewer reactors were operated at 20 °C and pH 7.5, and wastewater was sampled at 0, 0.25, 0.5, 1, 2, 3, 6, 9 and 12 h to measure the transformation/degradation of these marker compounds. The results showed that while methamphetamine, MDMA and benzoyl ecgonine were stable in the sewer reactors, cocaine and 6-acetyl morphine degraded quickly. Their degradation rates are significantly higher than the values reportedly measured in wastewater alone (without biofilms). All the degradation processes followed first order kinetics. Benzoyl ecgonine and morphine were also formed from the degradation of cocaine and 6-acetyl morphine, respectively, with stable formation rates throughout the test. These findings suggest that, in sewage epidemiology, it is essential to have relevant information of the sewer system (i.e. type of sewer, hydraulic retention time) in order to accurately back-estimate the consumption of illicit drugs. More research is required to look into detailed sewer conditions (e.g. temperature, pH and ratio of biofilm area to wastewater volume among others) to identify their effects on the fate of illicit drug markers in sewer systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past research has suggested that social engineering poses the most significant security risk. Recent studies have suggested that social networking sites (SNSs) are the most common source of social engineering attacks. The risk of social engineering attacks in SNSs is associated with the difficulty of making accurate judgments regarding source credibility in the virtual environment of SNSs. In this paper, we quantitatively investigate source credibility dimensions in terms of social engineering on Facebook, as well as the source characteristics that influence Facebook users to judge an attacker as credible, therefore making them susceptible to victimization. Moreover, in order to predict users’ susceptibility to social engineering victimization based on their demographics, we investigate the effectiveness of source characteristics on different demographic groups by measuring the consent intentions and behavior responses of users to social engineering requests using a role-play experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past research has suggested that social networking sites are the most common source for social engineering-based attacks. Persuasion research shows that people are more likely to obey and accept a message when the source’s presentation appears to be credible. However, many factors can impact the perceived credibility of a source, depending on its type and the characteristics of the environment. Our previous research showed that there are four dimensions of source credibility in terms of social engineering on Facebook: perceived sincerity, perceived competence, perceived attraction, and perceived worthiness. Because the dimensionalities of source credibility as well as their measurement scales can fluctuate from one type of source to another and from one type of context to another, our aim in this study includes validating the existence of those four dimensions toward the credibility of social engineering attackers on Facebook and developing a valid measurement scale for every dimension of them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a surprising cooperative adsorption process observed by scanning tunneling microscopy (STM) at the liquid−solid interface. The process involves the association of a threefold hydrogen-bonding unit, trimesic acid (TMA), with straight-chain aliphatic alcohols of varying length (from C7 to C30), which coadsorb on highly oriented pyrolytic graphite (HOPG) to form linear patterns. In certain cases, the known TMA “flower pattern” can coexist temporarily with the linear TMA−alcohol patterns, but it eventually disappears. Time-lapsed STM imaging shows that the evolution of the flower pattern is a classical ripening phenomenon. The periodicity of the linear TMA−alcohol patterns can be modulated by choosing alcohols with appropriate chain lengths, and the precise structure of the patterns depends on the parity of the carbon count in the alkyl chain. Interactions that lead to this odd−even effect are analyzed in detail. The molecular components of the patterns are achiral, yet their association by hydrogen bonding leads to the formation of enantiomeric domains on the surface. The interrelation of these domains and the observation of superperiodic structures (moiré patterns) are rationalized by considering interactions with the underlying graphite surface and within the two-dimensional crystal of the adsorbed molecules. Comparison of the observed two-dimensional structures with the three-dimensional crystal structures of TMA−alcohol complexes determined by X-ray crystallography helps reveal the mechanism of molecular association in these two-component systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study on the durability of different types of stabilised and unstabilised rammed earth walls. These rammed earth walls were constructed and exposed for 20 years to natural weathering, in a wet continental climate. None of these walls have shown complete collapse to date. A method to measure the rammed earth walls erosion by stereo-photogrammetry has been developed. The result shows that the mean erosion depth of the studied walls is about 2 mm (0.5% wall thickness) in the case of rammed earth wall stabilised with 5% by dry weight of hydraulic lime and about 6.4 mm (1.6% wall thickness) in the case of unstabilised rammed earth walls. The stabilisation enables to not use any plaster to protect the walls. In the case of the unstabilised rammed earth walls, an extrapolated lifetime longer than 60 years can be assessed. This shows a potential for the use of unstabilised rammed earth in the similar climatic conditions with this study. The method of stereo-photogrammetry used to measure the erosion of rammed earth walls on site may also help to calibrate and develop more pertinent laboratory test to assess the durability of rammed earth wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines and quantifies the effect of adding polyelectrolytes to cellulose nanofibre suspensions on the gel point of cellulose nanofibre suspensions, which is the lowest solids concentration at which the suspension forms a continuous network. The lower the gel point, the faster the drainage time to produce a sheet and the higher the porosity of the final sheet formed. Two new techniques were designed to measure the dynamic compressibility and the drainability of nanocellulose–polyelectrolyte suspensions. We developed a master curve which showed that the independent variable controlling the behaviour of nanocellulose suspensions and its composite is the structure of the flocculated suspension which is best quantified as the gel point. This was independent of the type of polyelectrolyte used. At an addition level of 2 mg/g of nanofibre, a reduction in gel point over 50 % was achieved using either a high molecular weight (13 MDa) linear cationic polyacrylamide (CPAM, 40 % charge), a dendrimer polyethylenimine of high molecular weight of 750,000 Da (HPEI) or even a low molecular weight of 2000 Da (LPEI). There was no significant difference in the minimum gel point achieved, despite the difference in polyelectrolyte morphology and molecular weight. In this paper, we show that the gel point controls the flow through the fibre suspension, even when comparing fibre suspensions with solids content above the gel point. A lower gel point makes it easier for water to drain through the fibre network,reducing the pressure required to achieve a given dewatering rate and reducing the filtering time required to form a wet laid sheet. We further show that the lower gel point partially controls the structure of the wet laid sheet after it is dried. Halving the gel point increased the air permeability of the dry sheet by 37, 46 and 25 %, when using CPAM, HPEI and LPEI, respectively. The resistance to liquid flow was reduced by 74 and 90 %, when using CPAM and LPEI. Analysing the paper formed shows that sheet forming process and final sheet properties can be engineered and controlled by adding polyelectrolytes to the nanofibre suspension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This doctoral studies focused on the development of new materials for efficient use of solar energy for environmental applications. The research investigated the engineering of the band gap of semiconductor materials to design and optimise visible-light-sensitive photocatalysts. Experimental studies have been combined with computational simulation in order to develop predictive tools for a systematic understanding and design on the crystal and energy band structures of multi-component metal oxides.