975 resultados para Scheduling Systems
Resumo:
The intensive use of distributed generation based on renewable resources increases the complexity of power systems management, particularly the short-term scheduling. Demand response, storage units and electric and plug-in hybrid vehicles also pose new challenges to the short-term scheduling. However, these distributed energy resources can contribute significantly to turn the shortterm scheduling more efficient and effective improving the power system reliability. This paper proposes a short-term scheduling methodology based on two distinct time horizons: hour-ahead scheduling, and real-time scheduling considering the point of view of one aggregator agent. In each scheduling process, it is necessary to update the generation and consumption operation, and the storage and electric vehicles status. Besides the new operation condition, more accurate forecast values of wind generation and consumption are available, for the resulting of short-term and very short-term methods. In this paper, the aggregator has the main goal of maximizing his profits while, fulfilling the established contracts with the aggregated and external players.
Resumo:
This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle- To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow calculation is included in the metaheuristics approach to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
This paper proposes a PSO based approach to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The statistical failure and repair data of distribution components is the main basis of the proposed methodology that uses a fuzzyprobabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A Modified Discrete PSO optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The optimal schedule minimizes the operation costs and it is obtained using a particle swarm optimization approach, which is compared with a deterministic approach used as reference methodology. The proposed method is applied to a 33-bus distribution network with 32 medium voltage consumers and 66 distributed generation units.
Resumo:
This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
Text based on the paper presented at the Conference "Autonomous systems: inter-relations of technical and societal issues" held at Monte de Caparica (Portugal), Universidade Nova de Lisboa, November, 5th and 6th 2009 and organized by IET-Research Centre on Enterprise and Work Innovation
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors research group has developed three multi-agent systems: MASCEM, which simulates the electricity markets; ALBidS that works as a decision support system for market players; and MASGriP, which simulates the internal operations of smart grids. To take better advantage of these systems, their integration is mandatory. For this reason, is proposed the development of an upper-ontology which allows an easier cooperation and adequate communication between them. Additionally, the concepts and rules defined by this ontology can be expanded and complemented by the needs of other simulation and real systems in the same areas as the mentioned systems. Each system’s particular ontology must be extended from this top-level ontology.
Resumo:
In competitive electricity markets it is necessary for a profit-seeking load-serving entity (LSE) to optimally adjust the financial incentives offering the end users that buy electricity at regulated rates to reduce the consumption during high market prices. The LSE in this model manages the demand response (DR) by offering financial incentives to retail customers, in order to maximize its expected profit and reduce the risk of market power experience. The stochastic formulation is implemented into a test system where a number of loads are supplied through LSEs.
Resumo:
The electricity market restructuring, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in an rising complexity in power systems operation. Various power system simulators have been introduced in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex environment. This paper focuses on the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The restructuring of MASCEM (Multi-Agent System for Competitive Electricity Markets), and this system’s integration with MASGriP (Multi-Agent Smart Grid Platform), and ALBidS (Adaptive Learning Strategic Bidding System) provide the means for the exemplification of the usefulness of this ontology. A practical example is presented, showing how common simulation scenarios for different simulators, directed to very distinct environments, can be created departing from the proposed ontology.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
The use of Electric Vehicles (EVs) will change significantly the planning and management of power systems in a near future. This paper proposes a real-time tariff strategy for the charge process of the EVs. The main objective is to evaluate the influence of real-time tariffs in the EVs owners’ behaviour and also the impact in load diagram. The paper proposes the energy price variation according to the relation between wind generation and power consumption. The proposed strategy was tested in two different days in the Danish power system. January 31st and August 13th 2013 were selected because of the high quantities of wind generation. The main goal is to evaluate the changes in the EVs charging diagram with the energy price preventing wind curtailment.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Sistemas de Informação Industriais, Engenharia Electrotécnica, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
A multi-resistência a antibióticos e medicamentos usados em quimioterapia é um dos grandes problemas com os quais as instituições de saúde se debatem hoje em dia. A acção provocada por bombas de efluxo é uma das suas causas. Estas bombas têm uma importância fundamental, uma vez que, ao expelirem todo o tipo de tóxicos para o exterior das células, também expelem medicamentos, fazendo com que estes não tenham o efeito desejado dentro delas. As bombas de efluxo são transportadores que se encontram nas membranas de todo o tipo de células. Existem dois grandes tipos de bombas de efluxo: as primárias e as secundárias. As primeiras conferem multi-resistência principalmente em células eucariotas, como as células do cancro em humanos, tendo como função a mediação da repulsa de substâncias tóxicas por intermédio da hidrólise de ATP. A primeira a ser descoberta e mais estudada destas bombas foi a ABCB1 que é o gene que codifica a glicoproteína-P (P de permeabilidade). Enquanto as secundárias, que são a maior fonte de multi-resistência em bactérias, promovem a extrusão de substâncias tóxicas através da força motriz de protões. Neste tipo de bombas são conhecidas quatro famílias principais, das quais uma das mais importantes é a superfamília RND, uma vez que inclui a bomba AcrAB-TolC, que é muito importante no metabolismo xenobiótico de bactérias Gramnegativas, nomeadamente a E.coli. Com o objectivo de reverter a multi-resistência, tanto em células eucariotas como procariotas, têm-se desenvolvido estratégias de combate que envolvem a descoberta de substâncias que inibam as bombas de efluxo. Assim sendo, ao longo dos tempos têm sido descobertas variadas substâncias que cumprem este objectivo. É o caso, por exemplo, dos derivados de fluoroquinolonas usados como inibidores de bombas de efluxo em bactérias ou do Tamoxifen, utilizado na terapia de pacientes com cancro da mama. Um dos grupos de substâncias estudados para o desenvolvimento de possíveis compostos que actuem como reversores de multi-resistência são os compostos derivados de hidantoínas. Estes, são conhecidos por possuírem uma grande variedade de propriedades bioquímicas e farmacológicas, sendo portanto usados para tratarem algumas doenças em humanos, como a epilepsia. Nestes, estão englobados compostos com actividade anti-convulsão que constitui a sua grande mais-valia e, dependente da substituição no anel que os constitui, uma grande variedade de outras propriedades farmacológicas como a anti-fungica, a anti-arritmica, a anti-viral, a anti-diabética ou por exemplo a antagonização de determinados receptores, como os da serotonina. Apesar de pouco usados em estudos experimentais para desenvolver substâncias anti-carcinogénicas, existem alguns estudos com este efeito. Objectivos: O presente projecto envolve o estudo de bombas de efluxo primárias e secundárias, em células eucariotas e procariotas, respectivamente. Em bactérias, foram usados quatro modelos experimentais: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, E. coli AG 100 e Salmonella Enteritidis NCTC 13349. Em células de cancro foram usadas, células T de linfoma de rato parentais e células T de linfoma de rato transfectadas com o gene humano MDR-1. O principal objectivo deste estudo foi a pesquisa de novos moduladores de bombas de efluxo presentes em bactérias e células do cancro, tentando assim contribuir para o desenvolvimento de novos agentes farmacológicos que consigam reverter a multi-resistência a medicamentos. Assim sendo foram testados trinta compostos derivados de hidantoínas: SZ-2, SZ-7, LL-9, BS-1, JH-63, MN-3, TD-7k, GG-5k, P3, P7, P10, P11, RW-15b, AD-26, RW-13, AD-29, KF-2, PDPH-3, Mor-1, KK-XV, Thioam-1, JHF-1, JHC-2, JHP-1, Fur-2, GL-1, GL-7, GL-14, GL-16, GL-18. Como forma de atingir estes objectivos, a actividade biológica dos trinta compostos derivados de hidantoínas foi avaliada nas quatro estirpes de bactérias da seguinte forma: foram determinadas as concentrações mínimas inibitórias dos trinta compostos como forma de definir as concentrações em que os compostos seriam utilizados. Os compostos foram posteriormente testadas com um método fluorométrico de acumulação de brometo de etídeo, que é um substrato comum em bombas de efluxo bacterianas, desenvolvido por Viveiros et al. A actividade biológica dos compostos derivados de hidantoínas nas células de cancro foi demonstrada por diferentes métodos. O efeito anti-proliferativo e citotóxico dos trinta compostos foi avaliado nas células T de linfoma de rato transfectadas com o gene humano MDR-1 pelo método de thiazolyl de tetrazólio (MTT). Como o brometo de etídeo também é expelido pelos transportadores ABC, estes compostos foram posteriormente testados com um método fluorométrico de acumulação de brometo de etídeo desenvolvido por Spengler et al nos dois diferentes tipos de células eucariotas. Resultados: A maioria dos compostos derivados de hidantoínas foi eficaz na modulação de bombas de efluxo, nas duas estirpes de bactérias Gram-negativas e nos dois diferentes tipos de células T de linfoma. Em contraste com estes resultados, nas duas estirpes de células Gram-positivas, a maioria dos compostos tiveram pouco efeito na inibição de bombas de efluxo ou até nenhum, em muitos dos casos. De uma maneira geral os melhores compostos nas diferentes estirpes de bactérias foram: Thioam-1, SZ-2, P3, Rw-15b, AD-26, AD-29, GL-18, GL-7, KF-2, SZ-7, MN-3, GL-16 e GL- 14. Foram portanto estes os compostos que provocaram maior acumulação de brometo de etídeo, inibindo assim com maior eficácia as bombas de efluxo. No presente estudo, a maioria dos compostos conseguiu inibir a resistência provocada pela bomba de efluxo ABCB1, tanto nas células parentais bem como nas células que sobre-expressam esta bomba, causando a acumulação de brometo de etídeo dentro das células. As células que sobreexpressam a bomba ABCB1 foram posteriormente testadas com citometria de fluxo que é a técnica padrão para pesquisa de inibidores de bombas de efluxo. Os compostos que foram mais efectivos na inibição da bomba ABCB1, causando assim maior acumulação de brometo de etídeo nas células que sobre-expressam esta bomba foram: PDPH-3, GL-7, KK-XV, AD-29, Thioam-1, SZ-7, KF-2, MN-3, RW-13, LL-9, P3, AD-26, JH-63 e RW- 15b. Este facto não corroborou totalmente os resultados da citometria de fluxo uma vez que os moduladores que provocaram maior inibição da bomba ABCB1 foram o MN-3, JH-63 e o BS-1, sendo que o último não foi seleccionado como um bom composto usando o método fluorométrico de acumulação de brometo de etídeo. Conclusão: Os compostos derivados de hidantoínas testados tiveram maior efeito nas estirpes de bactérias Gram-negativas do que nas Gram-positivas. Relativamente às células eucariotas, as estruturas mais activas apresentam substituintes aromáticos bem como alguns fragmentos aminicos terciários.
Resumo:
Energy resource scheduling is becoming increasingly important, such as the use of more distributed generators and electric vehicles connected to the distribution network. This paper proposes a methodology to be used by Virtual Power Players (VPPs), regarding the energy resource scheduling in smart grids and considering day-ahead, hour-ahead and realtime time horizons. This method considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. In this paper, distribution function errors are used to simulate variations between time horizons, and to measure the performance of the proposed methodology. A 33-bus distribution network with large number of distributed resources is used.
Resumo:
Recent changes of paradigm in power systems opened the opportunity to the active participation of new players. The small and medium players gain new opportunities while participating in demand response programs. This paper explores the optimal resources scheduling in two distinct levels. First, the network operator facing large wind power variations makes use of real time pricing to induce consumers to meet wind power variations. Then, at the consumer level, each load is managed according to the consumer preferences. The two-level resources schedule has been implemented in a real-time simulation platform, which uses hardware for consumer’ loads control. The illustrative example includes a situation of large lack of wind power and focuses on a consumer with 18 loads.