973 resultados para SW-CMM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evolution of localized damage zone is a key to catastrophic rupture in heterogeneous materials. In the present article, the evolutions of strain fields of rock specimens are investigated experimentally. The observed evolution of fluctuations and autocorrelations of strain fields under uniaxial compression demonstrates that the localization of deformation always appears ahead of catastrophic rupture. In particular, the localization evolves pronouncedly with increasing deformation in the rock experiments. By means of the definition of the zone with high strain rate and likely damage localization, it is found that the size of the localized zone decreases from the sample size at peak load to an eventual value. Actually, the deformation field beyond peak load is bound to suffer bifurcation, namely an elastic unloading part and a continuing but localized damage part will co-exist in series in a specimen. To describe this continuous bifurcation and localization process observed in experiments, a model on continuum mechanics is developed. The model can explain why the decreasing width of localized zone can lead stable deformation to unstable, but it still has not provided the complete equations governing the evolution of the localized zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

<正>以雷诺数Re=60000静止翼型SD7003和扑动翼型SD7003绕流为例,验证结合浸入边界和大涡模拟的混合方法模拟流动转捩的能力。对于静止翼型绕流算例,结合浸入边界和大涡模拟的混合方法可以很好地预测转捩点以及再附点。对于扑动翼型绕流的算例,目前方法给出

Relevância:

10.00% 10.00%

Publicador:

Resumo:

<正>柔性体一流体的相互作用是工程实际中经常遇到的问题。近年来,仿生学研究和微型飞行器的发展使柔性变形、复杂的几何边界形状和扑动/振动与流场作用相互联系在一起,如:鱼类游动和鸟类扑翼飞行推进机理研究以及机器鱼、微型飞行器的设计和控制等。这是一类典型的多物理场耦合现象。控制方程的强非线性使这类问题的

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Instabilities of fluid flows have traditionally been investigated by normal mode analysis, i.e. by linearizing the equations of flow and testing for unstable eigenvalues of the linearized problem. However, the results of eigenvalue analysis agree poorly in many cases with experiments, especially for shear flows. In this paper we study the instabilities of two-dimensional Couette flow of a polymeric fluid in the framework of non-modal stability theory rather than normal mode analysis. A power-law model is used to describe the polymeric liquid. We focus on the response to external excitations and initial conditions by examining the pseudospectra structures and the transient energy growths. For both Newtonian and non-Newtonian flows, the results show that there can be a rather large transient growth even though the linear operator of Couette flow has no unstable eigenvalue. The effects of non-Newtonian viscosity on the transient behaviors are examined in this study. The results show that the "shear-thinning/shear-thickening" effect increases/decreases the amplitude of responses to external excitations and initial conditions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonmodal linear stability of a falling film over a porous inclined plane has been investigated. The base flow is driven by gravity. We use Darcy's law to describe the flow in the porous medium. A simplified one-sided model is used to describe the fluid flow. In this model, the influence of the porous layer on the flow in the film can be identified by a parameter beta. The instabilities of a falling film have traditionally been investigated by linearizing the governing equations and testing for unstable eigenvalues of the linearized problem. However, the results of eigenvalue analysis agree poorly in many cases with experiments, especially for shear flows. In the present paper, we have studied the linear stability of three-dimensional disturbances using the nonmodal stability theory. Particular attentions are paid to the transient behavior rather than the long time behavior of eigenmodes predicted by traditional normal mode analysis. The transient behaviors of the response to external excitations and the response to initial conditions are studied by examining the pseudospectral structures and the energy growth function G(t) Before we study the nonmodal stability of the system, we extend the results of long-wave analysis in previous works by examining the linear stabilities for streamwise and spanwise disturbances. Results show that the critical conditions of both the surface mode and the shear mode instabilities are dependent on beta for streamwise disturbances. However, the spanwise disturbances have no unstable eigenvalue. 2010 American Institute of Physics. [doi:10.1063/1.3455503]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal effects of the heat transfer at free surface (represented by Biot number) on the Rayleigh-Marangoni-Benard instability in a system of liquid-porous layers with top free surface are investigated numerically. The results indicate that this thermal effect can evidently lead to the mode transition of convection, which is overlooked in previous works. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coupling mechanism of thermocapillary convection and evaporation effect in evaporating liquids was studied experimentally. The experiments were carried out to study a thin evaporating liquid layer in a rectangular test cell when the upper surface was open to air. By altering the imposed horizontal temperature differences and heights of liquid layers, the average evaporating rate and interfacial temperature profiles were measured. The flow fields were also visualized by PIV method. For comparison, the experiments were repeated by use of another two non-evaporating liquids to study the influence of evaporation effect. The results reveal evidently the role that evaporation effect plays in the coupling with thermocapillary convection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-dimensional linear instability analysis of thermocapillary convection in a fluid-porous double layer system, imposed by a horizontal temperature gradient, is performed. The basic motion of fluid is the surface-tension-driven return flow, and the movement of fluid in the porous layer is governed by Darcy's law. The slippery effect of velocity at the fluid-porous interface has been taken into account, and the influence of this velocity slippage on the instability characteristic of the system is emphasized. The new behavior of the thermocapillary convection instability has been found and discussed through the figures of the spectrum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

综述了近年来中国科学院微重力重点实验室(国家微重力实验室)完成的一系列微重力气液两相流动与池沸腾传热方面的地基实验、飞行实验和理论研究等方面获得的主要成果.在微重力气液两相流动方面, 提出了半理论Weber数模型用于预测微重力条件下气液两相弹一环状流转换, 并采用Monte Carlo方法, 针对气泡初始尺寸对泡一弹状流转换的影响进行数值研究.通过俄罗斯"和平号"空间站与IL-76失重飞机实验, 获得了微重力下的气液两相流型图, 与此同时在地面利用小尺度毛细管模型模拟了微重力气液两相流动特征.实验测量了微重力气液两相流压降, 并基于微重力流动特性建立了一个泡状流压降关联模型.在微重力池沸腾传热方面, 利用我国返回式卫星完成了两次空间实验, 其中, 第22颗返回式卫星搭载铂丝表面R113池沸腾实验采用控制温度的稳态加热方式, 而实践8号育种卫星搭载平面FC-72池沸腾实验则采用控制加热电压的准稳态加热方式.同时, 还进行了地面常重力和落塔短时微重力条件下的对比实验研究.观察到丝状加热表面微重力时轻微的传热强化现象, 而平板加热表面微重力核态池沸腾低热流时传热强化、高热流时传热恶化.微重力实验中观察到气泡脱落前存在横向运动现象, 据此分析了气泡行为与传热之间关系, 并提出了一个预测丝状加热表面气泡脱落直径的半理论模型.旨在对相关领域的进一步发展和空间两相流系统的应用提供数据及理论支持

Relevância:

10.00% 10.00%

Publicador:

Resumo:

针对钙质砂地基中桶形基础动态响应问题进行了实验研究.首先进行了水平静极限承载力实验,获得了水平载荷位移曲线,并为确定水平动载荷幅值的选择提供参考;然后针对主要因素,包括桶形基础尺寸、载荷幅值和频率、土体密度、压重等,进行了系列的室内小模型实验,并对结果进行了分析,获得了水平动载下桶形基础在钙质砂地基中的响应特点.结果表明:载荷幅值、频率、土体密度、桶形基础尺寸对动态响应有明显影响;动载下桶形基础周围钙质砂中孔压上升,但是较其他类砂土中的慢;在结构重量小时,桶形基础上升;有上覆较硬粘土层时,桶形基础和地基的响应减弱.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对动冰载作用下饱和砂土层液化过程中桶形基础承载力的弱化规律进行了数值模拟。建立液化土层的简化计算模型,采用FLAC3D软件分析了等效动冰载作用下土层不同位置的液化度及其主要影响因素;进而将具一定液化度土层的抗力作用等效为沿桶壁的不同刚度的非线性弹簧作用,在给定的位移破坏标准下确定不同液化度土层中桶形基础的承载力,分析液化土层中桶形基础承载力的弱化特征。在文中荷载条件和计算模型下,当土层顶面液化度为0.60、底面液化度为0.06时,土层中桶形基础的承载力降低12%。