1000 resultados para SOLID AMALGAMS


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid-state NMR and TEM were used to quantitatively examine the evolution of clay morphology upon equibiaxial stretching of polypropylene/montmorillonite (PP-MMT) nanocomposites up to a stretch ratio (?= final length/initial length) of 3.5. 1 H spin-lattice relaxation times were measured by the saturation-recovery sequence. For the nanocomposites, initial portions of the magnetization recovery
curves (e~20 ms) were found to depend on v t, indicative of diffusion-limited relaxation and in agreement with calculations based on estimates of the spin-diffusion barrier radius surrounding the paramagnetic centers in the clay, the electron-nucleus coupling constant, and the spin-diffusion coefficient. Initial slopes of these magnetization recovery curves directly correlated with the fraction of clay/polymer interface. New clay surface was exposed as a near linear function of strain. Long-time portions of the magnetization recovery curves yielded information on the average interparticle separations, which decreased slowly before reaching a plateau at ?=~2.5 as particles aligned. TEM images supported these findings and were used to define and quantify degrees of exfoliation and homogeneity from the NMR data. Exfoliation, defined as (platelets/ stack)-1, increased from 0.38 (unstretched) to 0.80 at ? = 3.5 for PP-MMT nanocomposites stretched at
150 C and 16 s-1. A lower stretch temperature, 145 C, which is slightly below melting onset, led to an exfoliation degree of 0.87 at ?= 2.8, consistent with the ability of higher melt viscosities to allow for higher shear stress transfer. Exposure of new clay surface is attributed to aggregate breakup and orientation at low strains (? e ~2) and to platelets sliding apart at higher strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we report on a novel, expedited solid-phase approach for the synthesis of biotinylated and fluorescently tagged irreversible affinity based probes for the chymotrypsin and elastase-like serine proteases. The novel solid-phase biotinylation or fluorescent labeling of the aminoalkane diphenyl phosphonate warhead using commercially available Biotin-PEG-NovaTag or EDANS NovaTag resin permits rapid, facile synthesis of these reagents. We demonstrate the kinetic evaluation and utilization of a number of these irreversible inactivators for chymotrypsin-like (chymotrypsin/human cathepsin G) and elastase-like serine proteases. Encouragingly, these compounds display comparable potency against their target proteases as their N-benzyloxycarbonyl (Cbz)-protected parent compounds, from which they were derived, and function as efficient active site-directed inactivators of their target proteases. We subsequently applied the biotinylated reagents for the sensitive detection of protease species via Western blot, showing that the inactivation of the protease was specifically mediated through the active site serine. Furthermore, we also demonstrate the successful detection of serine protease species with the fluorescently labeled derivatives “in-gel”, thus avoiding the need for downstream Western blotting. Finally, we also show the utility of biotinylated and pegylated affinity probes for the isolation/enrichment of serine protease species, via capture with immobilized streptavidin, and their subsequent identification via de novo sequencing. Given their selectivity of action against the serine proteases, we believe that these reagents can be exploited for the direct, rapid, and selective identification of these enzymes from biological milieu containing multiple protease subclasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key to various bone substitute scaffold production techniques is the development of free-flowing ceramic slurry with optimum theological properties. The aim is to achieve a colloidal suspension with as high a solid content as possible while maintaining a low viscosity which easily penetrates the pores of relevant sacrificial templates. The following investigation describes the optimization of a hydroxyapatite slip and demonstrates its potential application in scaffold production. Using predominantly spherical particles of hydroxyapatite of between 0.82 mu m and 16.2 mu m, coupled with a 2 wt % addition of the anionic polyelectrolyte, ammonium polyacrylate, an 80 wt % (55.9 vol %) hydroxyapatite solid loaded slip with a viscosity of approximately 126 mPa s has been developed. Its ability to infiltrate and replicate porous preforms has been shown using polyurethane foam. The enhanced particle packing achieved has allowed for the production of scaffolds with highly dense and uniform grain structures. The results represent a significant improvement in current slurry production techniques and can be utilized to develop high-density ceramic bone substitute scaffolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interactions of ions in the solid state for a series of representative 1,3-dialkylimidazolium hexafluorophosphate salts (either ionic liquids or closely related) have been examined by crystallographic analysis, combined with the theoretical estimation of crystal-packing densities and lattice-interaction energies. Efficient close-packing of the ions in the crystalline states is observed, but there was no compelling evidence for specific directional hydrogen-bonding to the hexafluorophosphate anions or the formation of interstitial voids. The close-packing efficiency is supported by the theoretical calculation of ion volumes, crystal lattice energies, and packing densities, which correlated well with experimental data. The crystal density of the salts can be predicted accurately from the summation of free ion volumes and lattice energies calculated. Of even more importance for future work, on these and related salts, the solid-state density of 1,3-dialkylimidazolium hexafluorophosphate salts can be predicted with reasonable accuracy purely on the basis of on ab initio free ion volumes, and this allows prediction of lattice energies without necessarily requiring the crystal structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preparation of cellulose-polyamine composite films and beads, which provide high loading of primary amines on the surface allowing direct one-step bioconjugation of active species, is reported using an ionic liquid (IL) dissolution and regeneration process. Films and bead architectures were prepared and used as immobilization supports for laccase as a model system demonstrating the applicability of this approach. Performance of these materials, compared to commercially available products, has been assessed using millimeter-sized beads of the composites and the lipase-catalyzed transesterification of ethyl butyrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthracene-based, H+-driven, ‘off–on–off’ fluorescent PET (photoinduced electron transfer) switches are immobilized on organic and inorganic polymeric solids in the form of Tentagel® and silica, respectively. The environment of the organic bead displaces apparent switching thresholds towards lower pH values whereas the Si–O- groups of silica electrostatically cause the opposite effect. These switches are ternary logic gate tags, one of which can be particularly useful in strengthening molecular computational identification (MCID) of small solid objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proton radiography technique has been used to investigate the incidence of a 3 x10(19) W/cm(2) infrared pulse with a 125 mu m-diameter gold wire. The laser interaction is observed to drive the growth of a radial electric field similar to 10(10) V/m on the surface of the wire which rises and decays over a temporal window of 20 ps. Such studies of the ultrafast charging of a solid irradiated at high-intensity may be of relevance to schemes for laser-driven ion acceleration and the fast-ignitor concept for inertial confinement fusion.