980 resultados para SHELL NANOPARTICLES
Resumo:
Sphere NH4Y1.9Eu0.1F7 nanoparticles were successfully synthesized by a hydrothermal method at 180 degrees C for 10 h. SEM and TEM images show the particles are spheres and have lots of hollows in them. The mean particle size is about 60 nm. The shape and size of the particles can be controlled by changing temperature and time of reactants. The luminescent property of the sample indicates that strong emission peaks of the Eu3+ ions are located at about 589 and 612 mm.
Resumo:
Strings of interconnected hollow carbon nanoparticles with porous shells were prepared by simple heat-treatments of a mixture of resorcinol-formaldehyde gel and transition-metal salts. The sample was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and nitrogen adsorption. Results show that the sample consisted of relatively uniform hollow particles with sizes ranging from 70 to 80 nm forming a strings-of-pearls-like nanostructure. The material with porous shells possessed well-developed graphitic structure with an interlayer (d(002)) spacing of 0.3369 nm and the stack height of the graphite crystallites of 9 nm.
Resumo:
A new kind of polyfluorene copolymers, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5 -(4',7'-di-2-thienyl-2',1',3',-benzothiadiazole) (PFDTBT), was prepared. The introduction of ZnO nanoparticles with perfect wurtzite crystal character into PFDTBT makes the resulted single-layer photovoltaic device to perform a significant photovoltaic response. Among the tested devices, the best performance is observed for that containing 60 wt% of ZnO nanoparticles, which has a photocurrent density of 1.17 mu A/cm(2), an open circuit voltage of 0.81 V. a fill factor of 0.09 and a power conversion efficiency of 0.009%. The results show that the polyfluorene derivatives/ZnO nanoparticles hybrid composites are excellent fluorescence and photovoltaic materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we demonstrated an effective enviromentally friendly synthesis route to prepare noble metallic (Au, Ag, Pt and Pd) nanoparticles (NPs) networks mediated by type I collagen in the absence of any seeds or surfactants. In the reactions, type I collagen served as stabilizing agent and assembly template for the synthesized metallic NPs. The hydrophobic interaction between collagen and mica interface as well as the hydrogen bonds between inter- and intra-collagen molecules play important roles in the formation of collagen-metallic NPs networks. The noble metallic NPs networks have many advantages in the applications of Surface-Enhanced Raman Scattering (SERS) and electrochemistry detection. Typically, the as-prepared Ag NPs networks reveal great Raman enhancement activity for 4-ATP, and can even be used to detect low concentration of DNA base, adenine.
Resumo:
A new kind of polyfluorene copolymers, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5 -(4',7'-di-2-thienyl-2',1',3',-benzothiadiazole) (PFDTBT), was prepared. The introduction of ZnO nanoparticles with perfect wurtzite crystal character into PFDTBT makes the resulted single-layer photovoltaic device to perform a significant photovoltaic response. Among the tested devices, the best performance is observed for that containing 60 wt% of ZnO nanoparticles, which has a photocurrent density of 1.17 mu A/cm(2), an open circuit voltage of 0.81 V. a fill factor of 0.09 and a power conversion efficiency of 0.009%. The results show that the polyfluorene derivatives/ZnO nanoparticles hybrid composites are excellent fluorescence and photovoltaic materials.
Resumo:
The color change induced by triple hydrogen-bonding recognition between melamine and a cyanuric acid derivative grafted on the surface of gold nanoparticles can be used for reliable detection of melamine. Since such a color change can be readily seen by the naked eye, the method enables on-site and real-time detection of melamine in raw milk and infant formula even at a concentration as low as 2.5 ppb without the aid of any advanced instruments.
Resumo:
A simple and environment friendly chemical route for detecting latent fingermarks by one-step single-metal nanoparticles deposition method (SND) was achieved successfully on several non-porous items. Gold nanoparticles (AuNPs) synthesized using sodium borohydride as reducing agent in the presence of glucose, were used as working solution for latent fingermarks detection. The SND technique just needs one step to obtain clear ridge details in a wide pH range (2.5-5.0), whereas the standard multi-metal deposition (MMD) technique requires six baths in a narrow pH range (2.5-2.8). The SND is very convenient to detect latent fingermarks in forensic scene or laboratory for forensic operators. The SND technique provided sharp and clear development of latent fingermarks, without background staining, dramatically diminished the bath steps.
Resumo:
Chemically converted graphene (CCG)/3,4,9,10-perylene tetracarboxylic acid (PTCA)/Au-ionic liquid (Au-IL) composites (CCG/PTCA/Au-IL) have been prepared by a chemical route that involves functionalization of CCG with PTCA followed by deposition of Au-IL. Transmission electron microscopy revealed well-distributed Au with a high surface coverage. The identity of the hybrid material was confirmed through X-ray diffraction and X-ray photoelectron spectroscopy. The CCG/PTCA/Au-IL composites exhibited good electrocatalytic behavior toward oxygen reduction. The results indicate that modification of CCG with Au-IL could play an important role in increasing the electrocatalytic activity of CCG.
Resumo:
Preparation of monodispersed platinum nanoparticles with average size 2.0 nm stabilized by amino-terminated ionic liquid was demonstrated. The resulting platinum nanoparticles (Pt-IL) retained long-term stability without special protection. The Pt-IL nanoparticles exhibited high electrocatalytic activity toward reduction of oxygen and oxidation of methanol. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry confirmed that the Pt-IL films could catalyze an almost four-electron reduction of dioxygen to water.
Resumo:
Gold nanoparticles stabilized by amino-terminated ionic liquid (Au-IL) have been in situ noncovalently deposited on poly(sodium 4-styrene-sulfonate) (PSS)-functionalized multiwalled carbon nanotubes (MWCNTs) to form a MWCNTs/PSS/Au-IL nanocomposite. PSS can interact with MWCNTs through hydrophobic interaction. Amino-terminated ionic liquid was applied to reduce aqueous HAuCl4, and the resulting gold nanoparticles were attached to the PSS-functionalized MWCNTs simultaneously. Most gold nanoparticles dispersed well on the functionalized MWCNTs. Transmission electron microscopy, Raman and X-ray photoelectron spectroscopy were used to confirm the composition and structure of the nanocomposites. The resulting MWCNTs/PSS/Au-IL composite exhibits good electrocatalysis toward oxygen and hydrogen peroxide reduction.
Resumo:
In this study, novel liver targeted doxorubicin (DOX) loaded alginate (ALG) nanoparticles were prepared by CaCl2 crosslinking method. Glycyrrhetinic acid (GA, a liver targeted molecule) modified alginate (GA-ALG) was synthesized in a heterogeneous system, and the structure of GA-ALG and the substitution degree of GA were analyzed by H-1 NMR, FT-IR and elemental analysis. The drug release profile under the simulated physiological condition and cytotoxicity experiments of drug-loaded GA-ALG nanoparticles were carried out in vitro. Transmission electron micrographs (TEM) and dynamic light scattering (DLS) analysis showed that drug-loaded GA-ALG nanoparticles have spherical shape structure with the mean hydrodynamic diameter around 214 +/- 11 nm.
Resumo:
SiO2-CaO-P2O5 ternary bioactive glass ceramic nanoparticles were prepared via the combination of sol-gel and coprecipitation processes. Precursors of silicon and calcium were hydrolyzed in acidic solution and gelated in alkaline condition together with ammonium dibasic phosphate. Gel particles were separated by centrifugation, followed by freeze drying, and calcination procedure to obtain the bioactive glass ceramic nanoparticles. The investigation of the influence of synthesis temperature on the nanopartilce's properties showed that the reaction temperature played an important role in the crystallinity of nanoparticle. The glass ceramic particles synthesized at 55 degrees C included about 15% crystalline phase, while at 25 degrees C and 40 degrees C the entire amorphous nanopowder could be obtained.
Resumo:
The surface modification of hydroxyapatite (HA) nanoparticles by the ring opening polymerization (ROP) of gamma-benzyl-L-glutamate N-carboxyanhydride (BLG-NCA) was proposed to prepare the poly(gamma-benzyl-L-glutamate) (PBLG)-grafted HA nanoparticles (PBLG-g-HA) for the first time. HA nanoparticles were firstly treated by 3-aminopropylthriethoxysilane (APS) and then the terminal amino groups of the modified HA particles initiated the ROP of BLG-NCA to obtain PBLG-g-HA. The process was monitored by XPS and FT-IR. The surface grafting amounts of PBLG on HA ranging from 12.1 to 43.1% were characterized by thermal gravimetric analysis (TGA). The powder X-ray diffraction (XRD) analysis confirmed that the ROP only underwent on the surface of HA nanoparticles without changing its bulk properties. The SEM measurement showed that the PBLG-g-HA hybrid could form an interpenetrating net structure in the self-assembly process.
Resumo:
We have demonstrated the design of a new type fluorescent assay based on the inner filter effect (IFE) of metal nanoparticles (NPs), which is conceptually different from the previously reported metal NPs-based fluorescent assays. With a high extinction coefficient and tunable plasmon absorption feature, metal NPs are expected to be capable of functioning as a powerful absorber to tune the emission of the fluorophore in the IFE-based fluorescent assays. In this work, we presented two proof-of-concept examples based on the IFE of Au NPs by choosing MDMO-PPV as a model fluorophore, whose fluorescence could be tuned by the absorbance of Au NPs with a much higher sensitivity than the corresponding absorbance approach.