989 resultados para Ross River virus (RRV)
Resumo:
Offshore winter-spawned fishes dominate the nekton of south-eastern United States estuaries. Their juveniles reside for several months in shallow, soft bottom estuarine creeks and bays called primary nursery areas. Despite similarity in many nursery characteristics, there is, between and within species, variability in the occupation of these habitats. Whether all occupied habitats are equally valuable to individuals of the same species or whether most recruiting juveniles end up in the best habitats is not known. If nursery quality varies, then factors controlling variation in pre-settlement fish distribution are important to year-class success. If nursery areas have similar values, interannual variation in distribution across nursery creeks should have less effect on population sizes or production. I used early nursery period age-specific growth and mortality rates of spot (Leiostomus xanthurus) and Atlantic croaker (Micropogonias undulatus)—two dominant estuarine fishes—to assess relative habitat quality across a wide variety of nursery conditions, assuming that fish growth and mortality rates were direct reflections of overall physical and biological conditions in the nurseries. I tested the hypothesis that habitat quality varies for these fishes by comparing growth and mortality rates and distribution patterns across a wide range of typical nursery habitats at extreme ends of two systems. Juvenile spot and Atlantic croaker were collected from 10 creeks in the Cape Fear River estuary and from 18 creeks in the Pamlico Sound system, North Carolina, during the 1987 recruitment season (mid-March–mid-June). Sampled creeks were similar in size, depth, and substrates but varied in salinities, tidal regimes, and distances from inlets. Spot was widely distributed among all the estuarine creeks, but was least abundant in the creeks in middle reaches of both systems. Atlantic croaker occurred in the greatest abundance in oligohaline creeks of both systems. Instantaneous growth rates derived from daily otolith ages were generally similar for all creeks and for both species, except that spot exhibited a short-term growth depression in the upriver Pamlico system creeks—perhaps the result of the long migration distance of this species to this area. Spot and Atlantic croaker from upriver oligohaline creeks exhibited lower mortality rates than fish from downstream polyhaline creeks. These results indicated that even though growth was similar at the ends of the estuaries, the upstream habitats provided conditions that may optimize fitness through improved survival.
Resumo:
Little is known about the ocean distributions of wild juvenile coho salmon off the Oregon-Washington coast. In this study we report tag recoveries and genetic mixed-stock estimates of juvenile fish caught in coastal waters near the Columbia River plume. To support the genetic estimates, we report an allozyme-frequency baseline for 89 wild and hatchery-reared coho salmon spawning populations, extending from northern California to southern British Columbia. The products of 59 allozyme-encoding loci were examined with starch-gel electrophoresis. Of these, 56 loci were polymorphic, and 29 loci had P0.95 levels of polymorphism. Average heterozygosities within populations ranged from 0.021 to 0.046 and averaged 0.033. Multidimensional scaling of chord genetic distances between samples resolved nine regional groups that were sufficiently distinct for genetic mixed-stock analysis. About 2.9% of the total gene diversity was due to differences among populations within these regions, and 2.6% was due to differences among the nine regions. This allele-frequency data base was used to estimate the stock proportions of 730 juvenile coho salmon in offshore samples collected from central Oregon to northern Washington in June and September-October 1998−2000. Genetic mixed-stock analysis, together with recoveries of tagged or fin-clipped fish, indicates that about one half of the juveniles came from Columbia River hatcheries. Only 22% of the ocean-caught juveniles were wild fish, originating largely from coastal Oregon and Washington rivers (about 20%). Unlike previous studies of tagged juveniles, both tag recoveries and genetic estimates indicate the presence of fish from British Columbia and Puget Sound in southern waters. The most salient feature of genetic mixed stock estimates was the paucity of wild juveniles from natural populations in the Columbia River Basin. This result reflects the large decrease in the abundances of these populations in the last few decades.
Resumo:
The phytoplankton species composition and abundance in Ogun River, Ogun state, Southwest Nigeria was studied for a period of seven months (December, 2011 - June, 2012), a total of forty-one genera belonging to five taxonomic groups were recorded from Ogun River. The phytoplankton species composition was surpassed by Chrysophyta with 15 species consisting of 36.6% followed by Chlorophyta with 14 consisting of 34.1%. This was followed by Cyanophyta (7 species) consisting of 17.1%, Euglenophyta with 3 species consisting of 7.3% and Pyrrophyta with 2 species consisting 4.92%. Cyanophyta was the highest in abundance consisting of 41% while the lowest in abundance was Pyrrophyta consisting of 1.5%. The low nature of phytoplankton abundance and diversity observed in this study must have been caused by the polluted nature of the water due to the anthropogenic activities carried out around its shores The dominance of Cyanophyta in this river is similar to findings from Lake Victoria, Lake Bishoftu, Lake Chaohu and the temple pond of Thirupour.
Resumo:
Investigation on the species composition and abundance of zooplankton in Ogun River, Abeokuta, Ogun state, Southwestern Nigeria was carried out for a period of seven months (December, 2011-June, 2012), Using hand trawling method, 55 µm mesh size plankton net was trawled horizontally ten times to capture zooplankton. The zooplankton samples were put into properly labeled plastic containers and preserved in 4% formalin solution. A total of sixteen genera from five taxonomic groups were recorded from Ogun River. Cladocera predominated both in terms of species composition and abundance. Five species of Cladocera was recorded consisting of 31.25%. Protozoa and Rotifera recorded four species each consisting of 25%. Copepoda recorded two species consisting of 12.5%, and Ostracoda with one species consisting of 6.25%. The low nature of zooplankton abundance and species composition observed in this study must have been caused by the polluted nature of the water due to the anthropogenic activities carried out around its shores The dominance of Cladocera in this river is similar to findings from River Echara and River Imo, Southeastern Nigeria.
Resumo:
This study assessed the physico-chemical quality of River Ogun, Abeokuta, Ogun state, Southwestern Nigeria. Four locations were chosen spatially along the water course to reflect a consideration of all possible human activities that are capable of changing the quality of river water. The water samples were collected monthly for seven consecutive months (December 2011 – June 2012) at the four sampling stations. pH, air temperature (℃), water temperature (℃), conductivity (µs/cm) and total dissolved solids (mg/L) were conducted in-situ with the use of HANNA Combo pH and EC multi meter Hi 98129 and Mercury-in-glass thermometer while dissolved oxygen (mg/L), nitrate (mg/L), phosphate (mg/L), alkalinity (mg/L) and hardness (mg/L) were determined ex-situ using standard methods. Results showed that dissolved oxygen, hydrogen ion concentration, total hardness and nitrate were above the maximum permissible limit of National Administration for Food, Drugs and Control (NAFDAC), Standard Organization of Nigeria (SON), Federal Environmental Protection Agency (FEPA), United States Environmental Protection Agency (USEPA), European Union (EU) and World Health Organization (WHO) for drinking water during certain months of the study period. Results also showed that water temperature and conductivity were within the permissible limits of all the standards excluding FEPA. However, total dissolved solids and alkalinity were within the permissible limits of all the standards. Adejuwon and Adelakun, (2012) also reported similar findings on Rivers Lala, Yobo and Agodo in Ewekoro local government area of Ogun state, Nigeria. Since most of the parameters measured were above the maximum permissible limits of the national and international standards, it can be concluded that the water is unfit for domestic uses, drinking and aquacultural purposes and therefore needs to be treated if it is to be used at all. The low dissolved oxygen values for the first four months was too low i.e. < 5 mg/L. This is most likely as a result of the amount of effluents discharged into the river. To prevent mass extinction of aquatic organisms due to anoxic conditions, proper regulations should be implemented to reduce the organic load the river receives.
Resumo:
The aim of this study was to investigate the monthly spatial occurrence of phytoplankton and zooplankton in River Ogun, Abeokuta, Southwest Nigeria. This was carried out for seven months between December, 2011 and June, 2012 in 4 stations. A total of 41 species of phytoplankton and 16 zooplankton species from 5 classes respectively were recorded. Zooplankton was dominated by Cladocera throughout the study period while phytoplankton was dominated by blue green algae (Cyanophyta or Cyanobacteria). The dominance of Cyanophyta in this river is similar to findings by Sekadende and co-workers, Ogato, Deng and co-worker, and Shakila and co-worker. The dominance of Cladocera in this river is similar to findings by Ude and co-workers, and Ogbuagu and co-worker.
Resumo:
For some time pollution of the waters of the Delaware River by municipal and industrial wastes has been suspected of playing a major role in the decline of the shad fishery. Accordingly, studies were planned to ascertain whether any conditions of water quality caused by stream pollution and harmful or lethal to shad were existant in the waters of the Delaware River during the migration periods of the shad.
Resumo:
Seasonal snow cover in the mountains of the Upper Colorado River Basin is a major source of water for a large portion of the southwestern United States. The extent and amount of this snowpack not only reflects changes in weather patterns and climate but also influences the general circulation through modification of the energy exchange between land and atmosphere. ... Satellite observations and remote sensing techniques can enhance the standard snowpack observations to provide the temporal and spatial measurements required for understanding the role of snow in the surface energy balance and improving the management of water resources.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): We estimate monthly runoff for a 2-dimensional solution domain containing those areas tributary to Pyramid Lake, Nevada (the Truckee River drainage basin) at a 1-kilometer grid cell spacing. ... To calculate the effect of snow on the hydrologic system, we perform two experiments. In the first we assume that all precipitation falls as rain; in the second we assume that some precipitation falls as snow, thus available water is a combination of rain and snowmelt. We find that considering the effect of snow results in a more accurate representation of mean monthly flow rates, in particular the peak flow during the melt season in the Sierra Nevada. These preliminary results indicate that a relatively simple snow model can improve the representation of Truckee River basin hydrology, significantly reducing errors in modeled seasonal runoff.
Resumo:
Major controls on river salinity (total dissolved solids) in the western United States are climate, geology, and human activity. Climate, in general, influences soil-river salinity via salt-balance variations. When climate becomes wetter, river discharge increases and soil-river salinity decreases; when climate becomes drier river discharge decreases and soil-river salinity increases. This study characterizes the river salinity response to discharge using statistical-dynamic methods. An exploratory analysis of river salinity, using early 1900s water quality surveys in the western United States, shows much river salinity variability is in response to storm and annual discharge. Presumably this is because river discharge is largely supported by surface flow.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Climatological events that disturb a landscape are important components in ecosystem processes. Modern ecosystem management plans now hope to incorporate knowledge of the spatial distribution and frequency of disturbance climate. The following describes a few analytic tools developed to help managers include disturbance climate in an ecosystem management plan for areas in the Columbia River Basin of the northwestern United States.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Evaluations of the impact of climate change (such as a greenhouse effect) upon water resources should represent both the expected change and the uncertainty in that expectation. Since water resources such as streamflow and reservoir levels depend on a variety of factors, each of which is subject to significant uncertainty, it is desirable to formulate methods of representing that uncertainty in the forcing factors and from this determine the uncertainty in the response variables of interest. We report here progress in the representation of the uncertainty in climate upon the uncertainty in the estimated hydrologic response.
Resumo:
Food and feeding habits of Schizothorax longipinnis inhabiting river Jhelum were studied by observing the gut contents of 225 fishes. The species is found to be illiophagic and herbivore in nature, chiefly feeding on decayed organic matter (54.2%), sand and mud (25.7%), food of plant and animal origin (20.1%). Correlation between food intake and various size groups for different seasons have been discussed in details.