962 resultados para Rhodium dimer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen Reduction Reaction (ORR) requires a platinum-based catalyst to reduce the activation barrier. One of the most promising materials as alternative catalysts are carbon-based, graphene and carbon nanotubes (CNT) derivatives. ORR on a carbon-based substrate involves the less efficient two electrons process and the optimal four electrons process. New synthetic strategies to produce tunable graphene-based materials utilizing graphene oxide (GO) as a base inspired the first part of this work. Hydrogen Evolution Reaction (HER) is a slow process requiring also platinum or palladium as catalyst. In the second part of this work, we develop and use a technique for Ni nanoparticles electrodeposition using NiCl2 as precursor in the presence of ascorbate ligands. Electrodeposition of nano-nickel onto flat glassy carbon (GC) and onto nitrogen-doped reduced graphene oxide (rGO-N) substrates are studied. State of the art catalysts for CO2RR requires rare metals rhenium or rhodium. In recent years significant research has been done on non-noble metals and molecular systems to use as electro and photo-catalysts (artificial photosynthesis). As Cu-Zn alloys show good CO2RR performance, here we applied the same nanoparticle electrosynthesis technique using as precursors CuCl2 and Cl2Zn and observed successful formation of the nanoparticles and a notable activity in presence of CO2. Using rhenium complexes as catalysts is another popular approach and di-nuclear complexes have a positive cooperative effect. More recently a growing family of pre-catalysts based on the earth-abundant metal manganese, has emerged as a promising, cheaper alternative. Here we study the cooperative effects of di-nuclear manganese complexes derivatives when used as homogeneous electrocatalysts, as well as a rhenium functionalized polymer used as heterogeneous electrocatalyst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Helicobacter pylori is one of the most widespread and successful human pathogens, colonizing half of the population stomach mucosa and causing gastric malignancies in 1% of carriers. Due to the increasing number of antimicrobial-resistant strains, in 2017 the WHO included H. pylori among pathogens that pose a major threat for humankind. In this study, we propose as a molecular target for novel antimicrobial strategies HP1043, an orphan response regulator essential for the viability of H. pylori as it orchestrates all the most important cellular processes. Amino acids most relevant for HP1043 dimerization and target DNA recognition were identified and used to guide an in-silico protein-DNA docking and generate a high-resolution structural model of the interacting HP1043 dimer and its target DNA. The model was experimentally validated and exploited to carry out a virtual screening of small molecule libraries, identifying 8 compounds potentially able to interfere with HP1043 function and likely block H. pylori infection. A second line of research aimed at the characterization of the regulatory function of HP1043 and the tight mechanisms of regulation of hp1043 gene expression. In particular, we proved a direct interaction between HP1043 and the housekeeping sigma80 factor of the RNA polymerase. A conditional mutant H. pylori strain overexpressing a synthetic copy of the hp1043 gene altered in nucleotide sequence yet encoding the wild-type protein was generated, achieving increased intracellular levels of HP1043. However, overexpression of HP1043 did not result in an upregulation of target genes transcription nor modulation of hp1043 transcript levels, pinpointing the existence of multiple overlayed mechanisms of regulation that affect both protein levels and functionality as well as maintain steady the amount of hp1043 transcript. Finally, we proposed that a mechanism of post-transcriptional regulation could depend on an antisense transcript to the hp1043 gene which was validated in two different strains.