989 resultados para Resource Loss
Resumo:
Rapid urbanization and industrialization in southern Jiangsu Province have consumed a huge amount of arable land. Through comparative analysis of land cover maps derived from TM images in 1990, 2000 and 2006, we identified the trend of arable land loss. It is found that most arable land is lost to urbanization and rural settlements development. Urban settlements, rural settlements, and industrial park-mine-transport land increased, respectively, by 87 997 ha (174.65%), 81 041 ha (104.52%), and 12 692 ha (397.99%) from 1990 to 2006. Most of the source (e.g., change from) land covers are rice paddy fields and dryland. These two covers contributed to newly urbanized areas by 37.12% and 73.52% during 1990-2000, and 46.39% and 38.86% during 2000-2006. However, the loss of arable land is weakly correlated with ecological service value, per capita net income of farmers, but positively with grain yield for some counties. Most areas in the study site have a low arable land depletion rate and a high potential for sustainable development. More attention should be directed at those counties that have a high depletion rate but a low potential for sustainable development. Rural settlements should be controlled and rationalized through legislative measures to achieve harmonious development between urban and rural areas, and sustainable development for rural areas with a minimal impact on the ecoenvironment. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A novel aliphatic polycarbonate from renewable resource was prepared by copolymerization of furfuryl glycidyl ether and CO2 using rare earth ternary catalyst; its number-average molecular weight (M-n) reached 13.3 x 10(4) g/mol. The furfuryl glycidyl ether and CO2 copolymer (PFGEC) was easy to become yellowish at ambient atmosphere due to post polymerization cross-linking reaction oil the furan ring; the gel content was 17.2 wt % after 24 h exposure to air at room temperature. PFGEC could be stabilized by addition of antioxidant 1010 (tetrakis[methylene (3.5-di(tert-butyl)-4-hydroxhydrocinnamate)]methane) in 0.5-3 wt % after copolymerization. The Diels-Alder (DA) reaction between N-phenylmaleimide and the pendant furan ring was also effective for the stabilization of PFGEC by reducing the amount of furan ring and introducing bulky groups into PFGEC. The cyclization degree could reach 72.1% when the molar ratio of N-phenylmaleimide to furan ring was 3: 1, and no gel was observed after 24 h exposure to air. The glass transition temperature (T-g) of PFGEC was 6.8 degrees C, and it increased to 40.3 degrees C after DA reaction (molar ratio of N-phenylmaleimide to furan ring was 3: 1).
Resumo:
The irreversible capacity loss of the carbon electrode in lithium-ion batteries at the first cycle is caused mostly by surface film growth. We inspected an unknown irreversible capacity loss (UICL) of the natural graphite electrodes. The charge/discharge behavior of graphite and meso-phase carbon microbeads heat-treated at 2800 degrees C (MCMB28) as the materials of the carbon anode in the lithium-ion battery were compared. It was found that the capacity loss of the natural graphite electrode in the first cycle is caused not only by surface film growth, but also by irreversible lithium-ion intercalation on the new formed surface at the potential range of lithium intercalation, while the capacity loss of the MCMB28 electrode is mainly originated from surface film growth. The reason for the difference of their irreversible capacity losses of these two kinds of carbon material was explained in relation to their structural characteristics. (C) 1997 Published by Elsevier Science S.A.
Resumo:
The radiation-induced loss of weight of F-46 was found to be proportional to irradiation dose and affected markedly by irradiation temperature.
Resumo:
The bay scallop Argopecten irradians is a hermaphroditic bivalve native to the Atlantic coast of the United States that was introduced to China for aquaculture production in 1982. It now supports a major aquaculture industry in China. Introduced species often start with limited genetic variability, which is problematic for the further selective breeding. Bay scallop aquaculture is exclusively hatchery based and as the initial introduction consisted of only 26 scallops, there have been concerns about inbreeding and inbreeding depression in cultured populations in China. In this study, eleven simple sequence repeat (SSR) markers were used to compare genetic variation in cultured populations from China with that in a natural population from the east coast of America. Although the difference in heterozygosity was small, the Chinese populations lost 9 of the 45 alleles (20%) found in the wild population. The reduced allele diversity suggests that the Chinese bay scallop populations experienced a bottleneck in genetic diversity that remains significant despite several recent introductions of new stocks aimed at expanding the gene pool. The loss of allele diversity may affect future efforts in selective breeding and domestication, and results of this study highlight the need for additional introductions, advanced breeding programs that minimize inbreeding and continued genetic monitoring. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations. The model is first tested by the additional experimental data, and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated. Then, the model's breaking index is replaced and tested. The new breaking index, which is optimized from the several breaking indices, is not sensitive to the spatial grid length and includes the bottom slopes. Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking. Finally, the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar. Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height (normalized by water depth) dominate the fractional energy losses. It is also found that the bar slope (limited to gentle slopes that less than 1:10) and the dimensionless bar length (normalized by incident wave length) have negligible effects on the fractional energy losses.
Resumo:
Duplications and rearrangements of coding genes are major themes in the evolution of mitochondrial genomes, bearing important consequences in the function of mitochondria and the fitness of organisms. Yu et al. (BMC Genomics 2008, 9: 477) reported the complete mt genome sequence of the oyster Crassostrea hongkongensis (16,475 bp) and found that a DNA segment containing four tRNA genes (trnK(1), trnC, trnQ(1) and trnN), a duplicated (rrnS) and a split rRNA gene (rrnL5') was absent compared with that of two other Crassostrea species. It was suggested that the absence was a novel case of "tandem duplication-random loss" with evolutionary significance. We independently sequenced the complete mt genome of three C. hongkongensis individuals, all of which were 18,622 bp and contained the segment that was missing in Yu et al.'s sequence. Further, we designed primers, verified sequences and demonstrated that the sequence loss in Yu et al.'s study was an artifact caused by placing primers in a duplicated region. The duplication and split of ribosomal RNA genes are unique for Crassostrea oysters and not lost in C. hongkongensis. Our study highlights the need for caution when amplifying and sequencing through duplicated regions of the genome.
Resumo:
The method for the measurement of the pure mechanical wear loss for 321 stainless steel, 1045 steel and pure iron in the study of the synergy between corrosion and wear was studied, The methods studied included the measurement in distilled water, by cathodic protection and by adding inhibitor KI, and all were compared with the wear loss in air. The experiment showed that the pure mechanical wear losses and friction coefficients obtained by the three methods were close to each other and can be used to calculate the various wear components in the study of the interaction of corrosion and wear, but the measurements in distilled water for pure iron and 1045 steel are not recommended due to their corrosion.
Resumo:
Two species, Artemisia frigida Willd. (C-3, semishrub, and dominant on overgrazed sites) and Cleistogenes squarrosa (Trin.) Keng (C-4, perennial bunchgrass, and dominant or codominant on moderately grazed sites) were studied to determine the effects of defoliation, nitrogen (N) availability, competition, and their interactions on growth, biomass, and N allocation in a greenhouse experiment. The main treatments were: two nitrogen levels (NO = 0 mg N pot(-1), N1 = 60 mg N pot(-1)), two defoliation intensities (removing 60% of total aboveground biomass and no defoliation), and three competitive replacement series (monocultures of each species and mixtures at 0.5:0.5). Our results were inconsistent with our hypothesis on the adaptive mechanisms of A. frigida regarding the interactive effects of herbivory, N, and competition in determining its dominant position on overgrazed sites. Cleistogenes squarrosa will be replaced by A. frigida on over-grazed sites, although C. squarrosa had higher tolerance to defoliation than did A. frigida. Total biomass and N yield and N-15 recovery of C. squarrosa in mixed culture were consistently lower than in monocultures, whereas those of A. frigida grown in mixtures were consistently higher than in monocultures, suggesting higher competitive ability of A. frigida. Our results suggest that interspecific competitive ability may be of equal or greater importance than herbivory tolerance in determining herbivore-induced species replacement in semi-arid Inner Mongolian steppe. In addition, the dominance of A. frigida on overgrazed sites has been attributed to its ability to shift plant-plant interactions through (lap colonization, root niche differentiation, and higher resistance to water stress.
Resumo:
We investigated the independent and combined effects of experimental warming and grazing on plant species diversity on the north-eastern Tibetan Plateau, a region highly vulnerable to ongoing climate and land use changes. Experimental warming caused a 26-36% decrease in species richness, a response that was generally dampened by experimental grazing. Higher species losses occurred at the drier sites where N was less available. Moreover, we observed an indirect effect of climate change on species richness as mediated by plant-plant interactions. Heat stress and warming-induced litter accumulation are potential explanations for the species' responses to experimental warming. This is the first reported experimental evidence that climate warming could cause dramatic declines in plant species diversity in high elevation ecosystems over short time frames and supports model predictions of species losses with anthropogenic climate change.
Resumo:
The Qinghai-Tibet Plateau lies in the place of the continent-continent collision between Indian and Eurasian plates. Because of their interaction the shallow and deep structures are very complicated. The force system forming the tectonic patterns and driving tectonic movements is effected together by the deep part of the lithosphere and the asthenosphere. It is important to study the 3-D velocity structures, the spheres and layers structures, material properties and states of the lithosphere and the asthenosphere for getting knowledge of their formation and evolution, dynamic process, layers coupling and exchange of material and energy. Based on the Rayleigh wave dispersion theory, we study the 3-D velocity structures, the depths of interfaces and thicknesses of different layers, including the crust, the lithosphere and the asthenosphere, the lithosphere-asthenosphere system in the Qinghai-Tibet Plateau and its adjacent areas. The following tasks include: (1)The digital seismic records of 221 seismic events have been collected, whose magnitudes are larger than 5.0 over the Qinghai-Tibet Plateau and its adjacent areas. These records come from 31 digital seismic stations of GSN , CDSN、NCDSN and part of Indian stations. After making instrument response calibration and filtering, group velocities of fundamental mode of Rayleigh waves are measured using the frequency-time analysis (FTAN) to get the observed dispersions. Furthermore, we strike cluster average for those similar ray paths. Finally, 819 dispersion curves (8-150s) are ready for dispersion inversion. (2)From these dispersion curves, pure dispersion data in 2°×2° cells of the areas (18°N-42°N, 70°E-106°E) are calculated by using function expansion method, proposed by Yanovskaya. The average initial model has been constructed by taking account of global AK135 model along with geodetic, geological, geophysical, receiving function and wide-angle reflection data. Then, initial S-wave velocity structures of the crust and upper mantle in the research areas have been obtained by using linear inversion (SVD) method. (3)Taking the results of the linear inversion as the initial model, we simultaneously invert the S wave velocities and thicknesses by using non-linear inversion (improved Simulated Annealing algorithm). Moreover, during the temperature dropping the variable-scale models are used. Comparing with the linear results, the spheres and layers by the non-linear inversion can be recognized better from the velocity value and offset. (4)The Moho discontinuity and top interface of the asthenosphere are recognized from the velocity value and offset of the layers. The thicknesses of the crust, lithosphere and asthenosphere are gained. These thicknesses are helpful to studying the structural differentia between the Qinghai-Tibet Plateau and its adjacent areas and among geologic units of the plateau. The results of the inversion will provide deep geophysical evidences for studying deep dynamical mechanism and exploring metal mineral resource and oil and gas resources. The following conclusions are reached by the distributions of the S wave velocities and thicknesses of the crust, lithosphere and asthenosphere, combining with previous researches. (1)The crust is very thick in the Qinghai-Tibet Plateau, varying from 60 km to 80 km. The lithospheric thickness in the Qinghai-Tibet Plateau is thinner (130-160 km) than its adjacent areas. Its asthenosphere is relatively thicker, varies from 150 km to 230 km, and the thickest area lies in the western Qiangtang. India located in south of Main Boundary thrust has a thinner crust (32-38 km), a thicker lithosphere of about 190 km and a rather thin asthenosphere of only 60 km. Sichuan and Tarim basins have the crust thickness less than 50km. Their lithospheres are thicker than the Qinghai-Tibet Plateau, and their asthenospheres are thinner. (2)The S-wave velocity variation pattern in the lithosphere-asthenosphere system has band-belted distribution along east-westward. These variations correlate with geology structures sketched by sutures and major faults. These sutures include Main Boundary thrust (MBT), Yarlung-Zangbo River suture (YZS), Bangong Lake-Nujiang suture (BNS), Jinshajiang suture (JSJS), Kunlun edge suture (KL). In the velocity maps of the upper and middle crust, these sutures can be sketched. In velocity maps of 250-300 km depth, MBT, BNS and JSJS can be sketched. In maps of the crustal thickness, the lithospheric thickness and the asthenospheric thickness, these sutures can be still sketched. In particular, MBT can be obviously resolved in these velocity maps and thickness maps. (3)Since the collision between India and Eurasian plate, the “loss” of surface material arising from crustal shortening is caused not only by crustal thickening but also by lateral extrusion material. The source of lateral extrusion lies in the Qiangtang block. These materials extrude along the JSJS and BNS with both rotation and dispersion in Daguaiwan. Finally, it extends toward southeast direction. (4)There is the crust-mantle transition zone of no distinct velocity jump in the lithosphere beneath the Qiangtang Terrane. It has thinner lithosphere and developed thicker asthenosphere. It implies that the crust-mantle transition zone of partial melting is connected with the developed asthenosphere. The underplating of asthenosphere may thin the lithosphere. This buoyancy might be the main mechanism and deep dynamics of the uplift of the Qinghai-Tibet hinterland. At the same time, the transport of hot material with low velocity intrudes into the upper mantle and the lower crust along cracks and faults forming the crust-mantle transition zone.
Resumo:
The Research of Seismic Recognition Techniques for Gas Reservoir Shang Yong_sheng(Geophysics) Directed by Yang Chang-chun Abstract Gas reservior is one of the most important nature resources. Someone forecast that the output will exceed crude oil in 2015 and become the largest energy source. Recently,more and more gas reservior are discovered as the oil field and gas filed exploration go deep into development. Although the gas proved reserves rise greatly the explorative degree of natural gas resource in our country is still very low. The potential of gas exploration is very great and our task is so hard. How to recognise and discover new gas reservoir is the first task based on the great gas reservior resources foreground. the gas reservior in different oil and gas field have its special gas generation, reservoiring, physical property conditions. However,it may have the same geophysical characters. So,it is very important to analyse, research, summarizing the geophysical characters of the gas reservior and make use of the characters to identify the gas layer effectively. This paper start with modeling,and it discuss the geophysical characters of the gas reservior response. It analyse the seismical wave characters of the gas reservoir. Furthermore, it summarize the method of using the seismica profile to identify the gas reservior directly. The paper discuss the research of extracting diffraction wave for mass diffraction wave grow at the edge of the gas reservoir at the seismic section. Making use of the technique of extracting diffraction wave to identify the gas reservior is the first experiment of the gas reservoir prediction technique. The avo technology is a new geophysical method. From the pre-stack analysis, this paper discuss the technique of using the rich information to identify the gas reservoir. Based on the case study of the Qidam basin and the Hailaer basin it discuss the method of predicating gas reservoir using pre-stack information. It include pre-stack amplitude preserve process, AVO modeling, fluid replacement technique, AVO analysis and interpretation technique. The paper summarize a gas reservoir prediction procedure focusing on the pre-stack information. The seismic wave will cause great attenuation when it pass through the gas layer and the high frequency component loss. This paper discuss the technique of extracting seismic attributes to represent the attenuation degree of seismica wave. Based on the attenuation attributes,it does the research of the gas reservor identification and prediction. At last,the paper discuss the method of calculating the azimuthal anisotropy to predict the fracture reservoir. Keyword: gas reservoir, diffraction wave, AVO, attenuation attribute,fracture prediction