968 resultados para Resolução Espacial
Resumo:
Since the 1980s, problem solving has been recommended by international curriculum proposals for the teaching of mathematics. In Brazil, with the publication of the National Curriculum Guidelines in 1997, this trend was reinforced and became the central activity of the classroom. Troubleshooting is seen as an asset in the learning process of the student, providing a context for learning concepts, mathematical methods and attitudes. However, this methodological approach requires deeper research, especially for new teaches. This work aims at a further study in this subject and in the experiences with problem solving in the classroom of High School students. The ground basis for this was the Mathematical Transalpine Rally, a competition between classrooms that seeks to facilitate the problem solving within mathematics teaching, and through an autonomous and creative work, performed collectively. The results of this experience, as well as the contribuition for the student’s education are presented
Resumo:
The mathematical problem solving is very important in the student's school career, leading him to develop his creativity and self-confidence. The way the teacher explains specific content may interfere in the student learning. Some researches show that the teacher trust and his problem solving rapport lead to a more satisfying job. This research focused on students of the course PARFOR at UNESP Bauru. This work was performed in order to investigate the affinity, trust and attitudes toward mathematical problem solving, the performance from who have positive and negative attitudes and the results that may be generated during class
Resumo:
One problem that has been happening frequently in port terminals is the poor planning of the loading and unloading of containers. The reason of this problem is the lack of an efficient method that provides the best means of these operations. The main goal of this work is, to implement a method that provides the best ways to perform the loading and unloading of containers, at each port and thus bring a great saving for these terminals, since the number of moves is directly proportional to cost. To carry out this program was used the idea that the containers are placed in vertical stacks, where the access can be done only by the top of the stack, so the ship was treated as an matrix and to fill it, two rules were created for loading and two for unloading. To obtain the best sequence of rules was used Beam Search method, which is an enumeration type implicit method that analyzes only the best solution of the tree generated. Thus, the program developed in the Java language, provides the best way to perform the loading and unloading ports and the way as the ship leaves each port using a graphical interface
Resumo:
The Biosusceptometry AC (BAC) is a research tool that has been extensively explored by the group Biomagnetism IBB-UNESP for monitoring of the gastrointestinal tract, its response to a known drug or in vivo performance of solid dosage forms. During this period the BAC, which has the characteristics of high sensitivity and low cost, has been developed primarily for recording signals contraction of activity and traffic human gastrointestinal tract. With the possibility of producing images with this instrumentation, it was possible to evaluate different situations in vitro and in vivo for physiological studies and pharmaceuticals. Considering the good performance of this system to produce planar images, the first aim of the BAC system tomography (TBAC) was to evaluate the system performance of BAC to produce tomographic images of phantoms ferromagnetic for a single channel system. All these applications were only possible because of their sensitivity to materials of high magnetic suscepitibility as ferrite, which allow to produce an electrical signal proportional to the variation of the magnetic flux generated by the presence of magnetic marker next to a first-order gradiometer. Measuring this variation at various points was possible to generate planar images that recently came to be produced in systems with multiple detectors, said multi-channels. From planar images, also producing tomographic images of simulators BAC bars in a system of 13 channels using only the center channel, with good results when applied to simple objects as one and two bars. When testing the resolution of the system with more elaborate forms the quality and resolution of images reconstructed is not satisfactory, which would be solved by increasing the spatial sampling rate and hence the acquisition time. The present system works with an acquisition time of about five hours. Whereas this system will be applied for in vivo experiments, the acquisition time became a ...
Resumo:
This work presents a theoretical study of ordinary differential equations of first order directed so as to provide basis for the development of an educational software that helps students and researchers confronted with this issue. The algorithm was developed in HTML language in to that the results provide a website that allows the audience to access the software anywhere which has internet connection
Resumo:
The objective of this work was to develop a numerical method to solve boundary value problems concerning to the use of dispersion model for describing the hydraulic behavior of chemical or biological reactors employed in the wastewater treatment. The numerical method was implemented in FORTRAN language generating a computational program which was applied to solve cases involving reaction kinetics of both integer and fractional orders. The developed method was able to solve the proposed problems evidencing to be a useful tool that provides more accurate design of wastewater treatment reactors
Resumo:
Não disponível
Resumo:
This paper proposed a two-dimensional spatial model to describe the adaptive immune response for viral hepatitis B. This model considered six populations: healthy hepatocytes T, infected hepatocytes Y , hepatitis B virus V , innate immune system I, active immune system X and memory cells, X. First, a compartmental model was constructed and its equilibrium solutions and also the threshold values related to the stability of each solution were obtained. Using this model, we was able to reproduce the different trends observed for the disease, which are: individuals that eliminate the infection without forming immune response, patients with acute and chronic carriers. By including dispersion of defense cells of the immune system and virus (spatial model), we analyze two situations: homogeneous model, in which the model parameters are the same at all points of the network, and heterogeneous model, which characterizes cells more permeable and less permeable to virus invasion. For the two spatial models (homogeneous and heterogeneous) the times relatead to the viral erradication and/or virus invasion and persistence becoming smaller in relation to the compartmental model. The results also showed that for the set of values used in the simulations and if the two diffusion rates are different from zero, the model is sensitive to variations in the rate of viral spread and not dependent on the dispersion of memory cells. Finally, the heterogeneous model when compared to the homogeneous model shows that the infection can be spatially limited depending on the type of the cell involved in the infection process