983 resultados para Resistant-bacteria
Limited occurrence of resistant radish (Raphanus sativus) to AHAS-inhibiting herbicides in Argentina
Resumo:
Radish has developed feral and weedy biotypes, which is a concern for agriculture around the world. In Argentina, it is one of the most widespread and troublesome crop weeds. In Brazil, this species has developed herbicide-resistance to acetohydroxyacid synthase (AHAS) inhibiting herbicides. The objective of this study was to record the presence of herbicide-resistant weedy radish plants in Argentina. In spring 2008, we found a small population of radish at the end of the flowering stage in an imidazolinone-tolerant canola field treated with imazethapyr. Screening and dose-response tests were conducted to two successive generations. They proved the biotype resistant status, and showed extensive survival (between 50 and 80% of control) to the application of a double dose of four AHAS‑inhibiting herbicides from two different chemical families (imidazolinones and sulfonylureas). Dose-response assays exhibited very high resistance for imazethapyr (LD50 = 2452.5 g a.i. ha-1, GR50 = 2926.9 g a.i. ha-1) and intermediate for metsulfuron (LD50 = 3.0 g a.i. ha-1, GR50 = 43.2 g a.i. ha-1). The acquisition of cross-resistance to different herbicide families would confer an adaptive and invasive advantage in agricultural environments to this biotype. Due to the herbicide rotation conducted in the field, the dispersion of this biotype was restricted. This is the first report of resistance in weedy radish in Argentina.
Resumo:
Weed biotypes resistant and susceptible to herbicides may have differences in their adaptive values. The aims of this study were to compare, under controlled and non-competitive condition, the growth analysis, germination features and seed weight of Fimbristylis miliacea (FIMMI) biotypes resistant and susceptible to acetolactate synthase (ALS) inhibiting herbicides. Experiments were conducted in a greenhouse and in a laboratory from October 2008 to February 2010. Two resistant biotypes (FIMMI 10 and FIMMI 12) and one susceptible biotype (FIMMI 13) were used for the studies. For the study on growth analysis, the treatments were arranged in a completely randomized experimental design with four replications and sampled at 21, 28, 35, 42, 49, 56, 69 days after emergence (DAE) and at flowering stage. For the studies on germination speed, germination and seed weight, the indexes for germination speed, percentage of germination at different temperatures and seed weight of the biotypes were determined. The results showed that the resistant biotype FIMMI 12 shows differences in all variables compared to the resistant biotype FIMMI 10 and compared to the susceptible biotype FIMMI 13, only for the evaluation at flowering. The susceptible biotype FIMMI 13 showed a higher germination speed index and higher germination rate when compared with the resistant biotypes. On the other hand, the resistant biotypes FIMMI 10 and FIMMI 12 showed higher seed weight.
Resumo:
The objective of this study was to determine the activity of the enzyme acetolactate synthase in biotypes of wild poinsettia (Euphorbia heterophylla) with multiple resistance to ALS- and Protox- inhibitors in the presence and absence of imazapyr, imazethapyr and nicosulfuron. We conducted in vitro assay of ALS enzyme extracted from plants of Vitorino, Bom Sucesso do Sul and Medianeira biotypes (with multiple resistance) and a susceptible population in the absence and presence of imazapyr, imazethapyr and nicosulfuron. In the absence of herbicides, biotypes with multiple resistance showed higher affinity for the substrate of the enzyme compared with the susceptible population. The herbicides imazapyr, imazethapyr and nicosulfuron had little effect on the enzyme activity of ALS-resistant biotypes and, conversely, high inhibitory effect on ALS of the susceptible population. Resistance factors were very high, greater than 438, 963 and 474 for Vitorino, Bom Sucesso do Sul and Medianeira biotypes, respectively. The resistance to ALS inhibitors is due to the insensitivity of ALS to herbicides of both imidazolinone and sulfonylurea groups, characterizing a cross-resistance.
Resumo:
Chemical control with herbicides, especially glyphosate, is the main method used to control ryegrass. However, the repeated use of glyphosate has selected resistant ryegrass biotypes. Thus, the ACCase inhibitor herbicides have become the main alternative to control glyphosate-resistant biotypes, being widely used by farmers in Rio Grande do Sul. Repeated use of ACCase inhibitors, in turn, have selected ryegrass biotypes resistant to this herbicide mechanism. Thus, the objective of this study was to evaluate the response of ryegrass biotypes to different clethodim rates by dose-response curves. Increasing doses (0, 12, 24, 48, 72, 96, 144 and 192 g a.i. ha-1) of the herbicide clethodim were applied at the 3-4 ryegrass leaf stage. The variables control at 14 and 28 days after treatment (DAT) and shoot dry weight were evaluated. The data were fitted by nonlinear regression log-logistic and C50 and GR50 were calculated based on the equation. The resistance factor was obtained by the ratio of C50 or GR50 of the resistant biotype by matching the susceptible biotype. Based on the equation parameters, the doses of GR50 64.7 and 234.5 g a.i. ha-1 clethodim and C50 11.2 and 172.1 g a.i. ha-1 clethodim were obtained, at 28 DAT for the susceptible and resistant biotypes, respectively. The ryegrass biotype denominated Cotril is resistant to clethodim, being controlled with a dose 15.3 times greater than that of the susceptible biotype, and a 50% reduction of this biotype occurs with a dose 3.62 times higher than that of the susceptible one.
Resumo:
In agricultural production systems where the glyphosate-resistant soybean crop (Glycine max) is grown and the practice of crop rotation with alternative herbicides is not adopted, the exclusive and continuous use of glyphosate has led to the occurrence of resistant weed populations that may limit or compromise the benefits of this technology. Thus, the efficacy of weed management programs, including the use of residual herbicides (sulfentrazone, flumioxazin, imazethapyr, diclosulan, chlorimuron and s-metolachlor) applied in preemergence and followed by in-crop postemergence applications of glyphosate (PRE-POST) were compared to glyphosate postemergence only programs - POST. The study was conducted across nine locations during the 2009/2010 and 2010/2011 growing seasons. PRE-POST programs were efficient in the control of Amaranthus viridis, Brachiaria plantaginea, Bidens pilosa, Commelina benghalensis, Eleusine indica, Euphorbia heterophylla and Raphanus raphanistrum, with the level of control being similar when comparing the program with two applications of glyphosate POST. Some PRE-POST programs were not efficient in controlling Cenchrus echinatus, Ipomoea hederifolia and Ipomoea triloba. Sulfentrazone and diclosulam PRE-POST programs improved the control of Ipomoea triloba compared to sequential applications of glyphosate alone. No significant differences in soybean yield were observed between any of the herbicide treatments or study locations. The use of residual herbicides in preemergence followed by glyphosate in-crop postemergence provides consistent weed control and reducing early season weed competition. Furthermore, these programs utilize at least two herbicide modes of action for herbicide use diversity, which will be needed to stay ahead of resistance build-up, regardless of when weeds may appear.
Resumo:
Chlorophylls and carotenoids are the main photosynthetic pigment in plants. In the weeds, the greatest amount of photosynthetic pigments can result in high competitiveness of the species. The aim of this study was to quantify the content of photosynthetic pigments in biotypes of fleabane (Conyza bonariensis) susceptible and resistant to glyphosate, by two different methods, as well as a correlation between chlorophyll content obtained by portable and classical methodology (extractable chlorophyll). An experiment was conducted in greenhouse and laboratory, 2 x 5 factorial scheme, where factor A was equivalent to biotypes of fleabane (resistant and susceptible to glyphosate) and factor B to developmental stages plants (rosette vegetative I, II and III and reproduction). At all stages of development, fleabane plants were evaluated with the portable determiner (chlorophyll content) and then the same leaves were subjected to classical methodology laboratory (extractable pigments). The resistant biotype of fleabane showed higher contents of chlorophyll a, b, and total carotenoids, inferring a greater competitive potential regarding the susceptible population to the herbicide. The portable determiner of chlorophyll showed high correlation with the classical method of determination of photosynthetic pigments, and can thus be used to accurately assess this, saving time and reagents.
Resumo:
This study aimed to control different populations of Digitaria insularisby glyphosate herbicide, isolated and mixed, besides the combination of methods (chemical and mechanical) to manage resistant adult plants. Three experiments were conducted, one in pots which were maintained under non-controlled conditions and two under field conditions. In the experiment in pots, twelve populations of D. insularis were sprayed with isolated glyphosate (1.44 and 2.16 kg a.e. ha-1) and mixed (1.44 and 2.16 kg a.e. ha-1) with quizalofop-p tefuryl (0.12 kg i.a. ha-1). The treatment of 1.44 kg a.e. ha-1 of glyphosate plus 0.12 kg a.i. ha-1 of quizalofop was sufficient for adequate control (>95%) of all populations. Population 11 (area of grain production in Itumbiara, GO) was considered sensitive to glyphosate. Others populations were moderately sensitive or tolerant to the herbicide. In the field, the plants of D. insularis of one of the experiments were mowed and, in the other, there were not. Eight treatments with herbicides [isolated glyphosate (1.44 and 2.16 kg a.e. ha-1) and mixed (1.44 and 2.16 kg a.e. ha-1) with quizalofop-p-tefuryl at 0.12 kg a.i. ha-1), clethodim at 0.108 kg a.i. ha-1) or nicosulfuron at 0.06 kg a.i. ha-1)] were assessed, in combination with or without sequential application of the standard treatment, sprayed 15 days after the first application. The combination of the mechanic control with the application of glyphosate (2.16 and 1.44 kg a.e. ha-1) plus quizalofop-p-tefuryl (0.12 kg a.i. ha-1) or clethodim (0.108 kg a.i. ha-1), associated to the sequential application, was the most effective strategy for the management of adult plants of resistant D. insularis.
Resumo:
ABSTRACT The recent introduction of Palmer amaranth (Amaranthus palmeri) in Brazilian agricultural areas may promote several changes on weed management, especially in no-till systems and in glyphosate-resistant crops, since glyphosate-resistant biotypes of A. palmerihave been frequently selected in other countries. Therefore, this research was developed in order to evaluate the glyphosate susceptibility of a Palmer amaranth biotype recently identified in the State of Mato Grosso, Brazil. For this purpose, glyphosate susceptibility of three Amaranthusbiotypes was compared: A.hybridus var. patulus, collected in the State of Rio Grande do Sul - Brazil; A.hybridus var. patulus, collected in the State of São Paulo - Brazil; and A.palmeri, collected in the State of Mato Grosso - Brazil. Dose-response curves were generated for all biotypes, considering eight rates of glyphosate and six replicates. All the experiments were repeated twice. Both A.hybridus biotypes were satisfactorily controlled by glyphosate, demanding rates equal to or lower than 541.15 g a.e. ha-1 for 80% control (LD80). The A.palmeri biotype was not controlled by glyphosate in any of the assessments and required rates greater than 4,500 g a.e. ha-1 to reach LD80, which are economically and environmentally unacceptable. Comparison of the Brazilian A.palmeri biotype to the A. hybridus biotypes, as well as, to the results available in scientific international literature, led to the conclusion that the Brazilian Palmer amaranth biotype is resistant to glyphosate.
Resumo:
ABSTRACTHerbicides mixtures are used in many situations without the adequate knowledge related with the effect on major target weeds. The objective of this study was to evaluate the effects of different herbicides mixtures used in irrigated rice in order to establish the adequate combinations for the prevention and management of herbicide resistance in barnyardgrass (Echinochloa crus-galli). Three experiments were performed at field conditions with all major post-emergent herbicides used in irrigated rice in Brazil. The first experiment was performed with barnyardgrass resistant to imidazolinone herbicides and herbicides applied at label rates. The second and third experiments were performed with barnyardgrass resistant and susceptible to imidazolinone herbicides applied at doses of 50 or 75% of the label rates. The occurrence of additive, synergistic and antagonistic effects was identified at 18, 18 and 64%, respectively, among the total of 50 different associations of herbicide and rates evaluated. In general, the mixture of ACCase inhibitors with ALS inhibitors, quinclorac, clomazone + propanil or thiobencarb resulted in antagonism. Sinergic mixtures were found in clomazone with propanil + thiobencarb, profoxydim with cyhalofop-butyl or clomazone, and quinclorac with imazapyr + imazapic, bispyribac-sodium or cyhalofop-butyl. The mixtures of quinclorac with profoxydim were antagonic. Rice grain yield varied according to the efficiency of weed control. Seveveral mixtures were effective for imidazolinone resistant barnyardgrass control.
Resumo:
The success of the intercropping among cultivated species depends on the adoption of practices that provide, in due course, greater competitive ability of a species over another. The objective of this study was to evaluate the use of glyphosate herbicide in the suppression of Brachiaria (signalgrass) intercropped with maize. The experiment was conducted in a randomized complete block design with four replications. The treatments were arranged in a 5 x 2 + 2 factorial arrangement, the first factor corresponding to the doses of glyphosate (48, 96, 144, 240, 480 g ha-1 of the acid equivalent (a.e)) and the second one to the vegetative stages of the signalgrass at the time of application (2 and 4 tillers). Two controls were added to the treatment list, comprising controls without herbicide application and hand removal of the signalgrass. The number of plants, tillers and dry matter of signalgrass was reduced with glyphosate. The increase of the glyphosate doses enhanced the injure to the forage plants, mainly when the compound was sprayed at the two-tiller vegetative stage. The dry matter of maize plants increased proportionally to the glyphosate dose. However, the height of the maize plants was not affected. The grain mass and productivity of maize grain increased with increasing dose of glyphosate. The maize yield was negatively influenced on the untreated control. Glyphosate at 96 and 144 g ha-1, when applied at 2 and 4 tiller stage, respectively, reduces the growth of signalgrass and does not affect the maize grain yield.
Resumo:
Two intramolecularly quenched fluorogenic peptides containing o-aminobenzoyl (Abz) and ethylenediamine 2,4-dinitrophenyl (EDDnp) groups at amino- and carboxyl-terminal amino acid residues, Abz-DArg-Arg-Leu-EDDnp (Abz-DRRL-EDDnp) and Abz-DArg-Arg-Phe-EDDnp (Abz-DRRF-EDDnp), were selectively hydrolyzed by neutral endopeptidase (NEP, enkephalinase, neprilysin, EC 3.4.24.11) at the Arg-Leu and Arg-Phe bonds, respectively. The kinetic parameters for the NEP-catalyzed hydrolysis of Abz-DRRL-EDDnp and Abz-DRRF-EDDnp were Km = 2.8 µM, kcat = 5.3 min-1, kcat/Km = 2 min-1 µM-1 and Km = 5.0 µM, kcat = 7.0 min-1, kcat/Km = 1.4 min-1 µM-1, respectively. The high specificity of these substrates was demonstrated by their resistance to hydrolysis by metalloproteases [thermolysin (EC 3.4.24.2), angiotensin-converting enzyme (ACE; EC 3.4.24.15)], serineproteases [trypsin (EC 3.4.21.4), a-chymotrypsin (EC 3.4.21.1)] and proteases present in tissue homogenates from kidney, lung, brain and testis. The blocked amino- and carboxyl-terminal amino acids protected these substrates against the action of aminopeptidases, carboxypeptidases and ACE. Furthermore, DR amino acids ensured total protection of Abz-DRRL-EDDnp and Abz-DRRF-EDDnp against the action of thermolysin and trypsin. Leu-EDDnp and Phe-EDDnp were resistant to hydrolysis by a-chymotrypsin. The high specifity of these substrates suggests their use for specific NEP assays in crude enzyme preparations
Resumo:
In the present study we compared the inoculation of swine gastric mucus into the stomach of mice, the urease test and carbolfuchsin-stained smears for the diagnosis of the infection with "Gastrospirillum suis" ("Helicobacter heilmannii" type 1), an uncultivated tightly spiralled gastric bacterium. Fragments obtained from the antral and oxyntic mucosa of the stomach of 50 slaughtered pigs were used for urease test, for carbolfuchsin-stained smears and for obtaining scrapings of mucus for mouse inoculation. The mice were killed by spinal dislocation 10 days after inoculation and fragments of the antral and oxyntic mucosa were used for spiral bacterium identification (urease test and carbolfuchsin-stained smears). Among the methods employed for the diagnosis of "H. heilmannii" infection, the inoculation of gastric mucus into the stomach of mice was the most sensitive and demonstrated bacterial positivity in 31 (62.0%) swine. Direct examination showed tightly spiralled bacteria in the gastric mucosa of only 4 (8.0%) of the 50 pigs studied. Among them, 3 (6.0%) presented a positive preformed urease test. Spiral bacteria were not seen in the gastric mucosa of any control mice. These results show that the use of the mouse inoculation method improved the detection of "H. heilmannii" in swine
Resumo:
Paracoccidioidomycosis (PCM) is the most prevalent deep mycosis in Latin America and presents a wide spectrum of clinical manifestations. We established a genetically controlled murine model of PCM, where A/Sn mice develop an infection which mimics the benign disease (immune responses which favor cellular immunity) and B10.A animals present the progressive disseminated form of PCM (preferential activation of B cells and impairment of cellular immune responses). To understand the immunoregulatory phenomena associated with resistance and susceptibility in experimental PCM, A/Sn and B10.A mice were studied regarding antigen-elicited secretion of monokines (TNF-a and TGF-ß) and type-1 (IL-2 and IFN-g) and type-2 (IL-4,5,10) cytokines. Total lymph node cells from resistant mice infected ip with P. brasiliensis produced early and sustained levels of IFN-g and IL-2; type-2 cytokines (IL-4 and IL-5) started to appear 8 weeks after infection. In contrast, susceptible mice produced low levels of IFN-g concomitant with significant levels of IL-5 and IL-10 early in the infection. In the chronic phase of the disease, susceptible animals presented a transitory secretion of IL-2, and IL-4. In the pulmonary infection IL-4, IL-5 and IL-10 were preferentially detected in the lung cells washings of susceptible animals. After in vitro challenge with fungal antigens, normal peritoneal macrophages from B10.A mice secreted high levels of TGF-ß and low levels of TNF-a. In contrast, macrophages from A/Sn animals released high levels of TNF-a associated with a small production of TGF-ß. The in vivo depletion of IFN-g not only abrogated the resistance of A/Sn mice but also diminished the relative resistance of B10.A animals. The in vivo depletion of IL-4 did not alter the disease outcome, whereas administration of rIL-12 significantly enhanced resistance in susceptible animals. Taken together, these results suggest that an early secretion of high levels of TNF-a and IFN-g followed by a sustained secretion of IL-2 and IFN-g plays a dominant role in the resistance mechanisms to P. brasiliensis infection. In contrast, an early and ephemeral secretion of low levels of TNF-a and IFN-g associated with production of IL-5, IL-10 and TGF-ß characterizes the progressive disease of susceptible animals.
Resumo:
Genotyping techniques are valuable tools for the epidemiologic study of Staphylococcus aureus infections in the hospital setting. Pulsed-field gel electrophoresis (PFGE) is the current method of choice for S. aureus strain typing. However, the method is laborious and requires expensive equipment. In the present study, we evaluated the natural polymorphism of the genomic 16S-23S rRNA region for genotyping purpose, by PCR-based ribotyping. Three primer pairs were tested to determine the size of amplicons produced and to obtain better discrimination with agar gel electrophoresis and ethidium bromide staining. The resolution of the typing system was determined using sets of bacteria obtained from clinical specimens from a large tertiary care hospital. These included DNA from three samples obtained from a bacteremic patient, six strains with known and diverse PGFE patterns, and 88 strains collected over a 3-month period in the same hospital. Amplification patterns obtained from samples from the same patient were identical, and PFGE from samples known to be different produced three genotypes. Amplification of DNA from 61 methicillin-resistant isolates produced only one pattern. Methicillin-sensitive strains yielded a diversity of patterns, pointing to a true polyclonal distribution throughout the hospital (22 unique patterns from 27 strains). Computer-based software can be used to differentiate among identifiable strains, given the low number of bands and good characterization of PCR products. PCR-based ribotyping can be a useful technique for genotyping methicillin-sensitive S. aureus strains, but is of limited value for methicillin-resistant strains.
Resumo:
The antibacterial activity of a series of 1,4-naphthoquinones was demonstrated. Disk diffusion tests were carried out against several Gram-positive and Gram-negative bacteria. The compound 5-amino-8-hydroxy-1,4-naphthoquinone was the most effective, presenting inhibition zones measuring 20 mm against staphylococci, streptococci and bacilli at 50 µg/ml. Methicillin-resistant Staphylococcus aureus and several clinical isolates of this bacterium were also inhibited. Naphthazarin, 5-acetamido-8-hydroxy-1,4-naphthoquinone, and 2,3-diamino-1,4-naphthoquinone were the next most active compounds. The minimal inhibitory concentration of the active compounds was determined against S. aureus, ranging from 30 to 125 µg/ml. All compounds presented a minimal bactericidal concentration higher than 500 µg/ml, indicating that their effect was bacteriostatic. The EC50, defined as the drug concentration that produces 50% of maximal effect, was 8 µg/ml for 5-amino-8-hydroxy-1,4-naphthoquinone against S. aureus, S. intermedius, and S. epidermidis. These results indicate an effective in vitro activity of 5-amino-8-hydroxy-1,4-naphthoquinone and encourage further studies for its application in antibiotic therapy.