996 resultados para Relaxin-3
Resumo:
Synthesis of chiral bicyclo[4.3.1]decanes via an intramolecular acid catalysed type II ene reaction of chiral (5-isopropenylcyclohex-2-enyl)acetaldehydes derived from (R)-carvone is described. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Chlorine-35 NQR frequency and spin-lattice relaxation time measurements as a function of temperature in the range 77-300 K were carried out on 2-amino-3,5-dichloropyridine. Two NQR signals were observed and were assigned to the two chlorines present in the molecule using the additive model for substituent effects. The temperature dependence of the NQR frequency was analysed in terms of the torsional oscillations of the molecule and the torsional frequencies and their temperature dependence were calculated numerically using a two-mode approximation. The temperature dependence of the NQR spin-lattice relaxation time was found to be mainly due to the torsional oscillations of the molecule, with anharmonicity effects showing up at higher temperatures. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
The title compound, also known as N-(3-nitrophenyl)acetamide, C8H8N2O3, is an organic non-linear optical material. It crystallizes in the monoclinic system in the chiral space group P2(1), and there are four independent molecules in the asymmetric unit.
Resumo:
Nanoclusters of bimetallic Pt-Ru are electrochemically deposited on conductive polymer, poly(3,4-ethylenedioxythiophene)(PEDOT), which is also electrochemically deposited on a carbon paper substrate. The bimetallic deposition is carried out in an acidic electrolyte consisting of chloroplatinic acid and ruthenium chloride at 0.0 V versus saturated calomel electrode (SCE) on PEDOT coated carbon paper. A thin layer PEDOT on a carbon paper substrate facilitates the formation of uniform, well-dispersed, nano clusters of Pt-Ru of mean diameter of 123 nm, which consist of nanosize particles. In the absence of PEDOT, the size of the clusters is about 251 nm, which are unevenly distributed on carbon paper substrate. Cyclic voltammetry studies suggest that peak currents of methanol oxidation are several times greater on PtRu-PEDOT electrode than on Pt-Ru electrode in the absence of PEDOT. (C) 2011 Elsevier B.V. All rights reserved.
Electrical characterization of Ba(Zr0.1Ti0.9)O-3 thin films grown by pulsed laser ablation technique
Resumo:
In situ annealed thin films of ferroelectric Ba(Zr0.1Ti0.9)O-3 were deposited on platinum substrates by pulsed laser ablation technique. The as grown films were polycrystalline in nature without the evidence of any secondary phases. The polarization hysteresis loop confirmed the ferroelectricity, which was also cross-checked with the capacitance-voltage characteristics. The remnant polarization was about 5.9 muC cm(-2) at room temperature and the coercive field was 45 kV. There was a slight asymmetry in the hysteresis for different polarities, which was thought to be due to the work function differences of different electrodes. The dielectric constant was about 452 and was found to exhibit low frequency dispersion that increased with frequency, This was related to the space-charge polarization. The complex impedance was plotted and this exhibited a semicircular trace, and indicated an equivalent parallel R - C circuit within the sample. This was attributed to the grain response. The DC leakage current-voltage plot was consistent with the space-charge limited conduction theory, but showed some deviation, which was explained by assuming a Poole-Frenkel type conduction to be superimposed on to the usual space-charge controlled current. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Grain size has marked effects on charge-ordering and other properties of Nd(0.5)A(0.5)MnO(3) (A=Ca or Sr). Thus, the anti-ferromagnetic (AFM) transition in Nd0.5Ca0.5MnO3 is observed distinctly only in samples sintered at 1273 K or higher. The sample with a small grain size (sintered at 1173 K) shows evidence for greater ferromagnetic (FM) interaction at low temperatures, probably due to phase segregation. The FM transition as well as the charge-ordering transition in Nd0.5Sr0.5MnO3 becomes sharper in samples sintered at 1273 K or higher. The sample sintered at 1173 K does not show the AFM-CO transition around 150 K and is FM down to low temperatures; the apparent T-c-T-co gap decreases with the increase in the grain size. The samples sintered at lower temperatures (<1673 K) show evidence for greater segregation of the AFM and FM domains. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Temperature dependent Mossbauer measurements are done on the samples of La1- xCaxMn1-y (FeyO3)-Fe-57 with x=0 and 0.25, and y=0.01. With decreasing temperature, the specimen with x=0.25 shows a paramagnetic to ferromagnetic transition around 175 K. In the specimen x=0.0, the temperature dependence of both the center shift (delta) and the recoilless fraction (f) can be fitted very well with the Debye theory with a theta(D)=320+/-50 K. But for the specimens with x=0.25, f and delta show distinct deviations from the Debye behavior in the temperature range in which the resistivity shows a sharp decrease. Dips observed in both the f and delta around the transition temperature suggest that the Jahn-Teller distortion observed in these systems is dynamic in nature.
Resumo:
Relaxor properties of polycrystalline 0.7Pb(Mg1/3Nb2/3)O-3-0.3PbTiO(3) (PMN-PT) thin films were studied in terms of the diffuse nature of phase transition along with the frequency dispersion of temperature (T-m) at which the dielectric constant exhibits maximum value. Existence of remnant polarization (P-r) above the phase transition temperature, which is a characteristic property of typical relaxor ferroelectric has also been observed in the present case. The films exhibited a gradual decrease of remnant polarization with increase of temperature. Among the different models of relaxor ferroelectric, Vogel-Fulcher model has been found to be suitable to describe the frequency dispersion of T-m in this case. Freezing of dipole moment with decrease of temperature was thought to be the origin of the temperature dependence of dielectric dispersion.
Resumo:
The title compound, La14V6CuO36.5, was prepared from a stoichiometric mixture of La2O3,V2O5, and CuO at 1050-1080 degreesC. The compound forms transparent, pale green crystals and was characterized by wavelength dispersive spectroscopy and single crystal X-ray diffraction. The structure contains isolated VO43- tetrahedra and [OCuO](3-) sticks dispersed in a lanthanum oxide network. Films of La14V6CuO36.5 were grown on R-plane sapphire by using pulsed laser deposition. Rutherford backscattering spectroscopic and X-ray diffraction analyses of the films showed oriented growth of the title phase, a similar to5 eV optical band gap and n-type conductivity. The compound is an example of a transparent copper(I) oxide.
Resumo:
The sulfur atom in the substrates leads to modest enhancements in the titled phenomena: these are essentially derived from favourable enthalpies of activation, the negative entropies of activation possibly indicating a measure of stereoelectronic control.
Resumo:
Reaction between CdCl2.H2O and NaH2PO4.H2O Under hydrothermal conditions gives rise to a new cadmium chlorophosphate of the formula Na-3[Cd4Cl3(HPO4)(2)(H2PO4)(4)] I. This material crystallizes in the orthorhombic system with space group Fmm2(no. 42). I has macroanionic layers of [Cd4Cl3(HPO4)(2)(H2PO4)(4)](3-) with Na+ ions in the interlamellar space. The discovery of such compounds suggests that metathetic reactions carried out under hydrothermal conditions may provide a novel route for the synthesis of new open-framework structures.
Resumo:
Equilibrium concentrations of various condensed and gaseous phases have been thermodynamically calculated, using the free energy minimization criterion, for the metalorganic chemical vapour deposition (MOCVD) of copper films using bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) as the precursor material. From among the many chemical species that may possibly result from the CVD process, only those expected on the basis of mass spectrometric analysis and chemical reasoning to be present at equilibrium, under different CVD conditions, are used in the thermodynamic calculations. The study predicts the deposition of pure, carbon-free copper in the inert atmosphere of argon as well as in the reactive hydrogen atmosphere, over a wide range of substrate temperatures and total reactor pressures. Thin films of copper, grown on SiO2/Si(100) substrates from this metalorganic precursor by low pressure CVD have been characterized by XRD and AES. The experimentally determined composition of CVD-grown copper films is in reasonable agreement with that predicted by thermodynamic analysis.
Resumo:
Low-spin (LS) to intermediate-spin (IS) state transitions in crystals of LnCoO(3) (Ln = La, Pr and Nd) have been investigated by variable temperature infrared spectroscopy. The spectra reveal the occurrence of the transition around 120, 220 and 275 K, respectively, in LaCoO3,PrCoo(3) and NdCoO3, at which temperatures the intensities of the stretching and the bending modes associated with the LS state decrease, accompanied by an increase in the intensities of the bands due to IS state. The characteristic frequencies of both the spin states decrease with increase in temperature, showing anomalies around the transition. (C) 2001 Published by Elsevier Science B.V.
Resumo:
The title compound I (24-(S)-Hydroxy Coprastan-3-one) crystallises in orthorhombic space group P2(1)2(1)2(1) with Z = 4. The unit cell dimensions are a = 6.701(2)Angstrom, b = 11.506(8)Angstrom, c = 32.183(4)Angstrom, V = 2481(2)Angstrom (3), D-cal = 1.077 Mg/m(3). The tide compound II (24-(R)-Hydroxy Coprastan-3-one) crystallises in orthorhombic space group P212121 with two molecules per assymetric unit and with Z = 8. The Unit cell dimensions are a = 10.954(2)Angstrom, b = 21.757(6)Angstrom, c = 21.130(7)Angstrom, V = 5035.0(2)Angstrom (3), D-cal = 1.062 Mg/m(3). In compound I and in both the molecules of compound II, the rings A, B & C are in chair conformation and the five membered ring D is in envelope conformation. The priority sequence attached to the chiral carbon C24 has "S" designation in compound I and "R" designation in compound II. The structures are stabilized by C-H . . .O and O-H---O hydrogen bonds.
Resumo:
The structure of a type I langbeinite, Rb2Cd2(SO4)(3), displays three different phases, cubic with a = 10.378(5) Angstrom (space group P2(1)3) at room temperature, monoclinic at 120 K with a = 10.328(3), b = 10.322(3), c = 10.325(3) Angstrom, beta = 89.975(1)degrees (space group P2(1)), and orthorhombic at 85 K with a = 10.319(2), b = 10.321(2), c = 10.320(2) Angstrom (space group P2(1)2(1)2(1)), respectively. Precise single-crystal analyses of these phases indicate that Rb2Cd2(SO4)(3) distorts initially from cubic to monoclinic upon cooling followed by a significant reorientation of the SO4 tetrahedra, resulting in an orthorhombic symmetry upon further cooling. The three structures have been established unequivocally using the same crystal. There is no indication of the formation of an intermediate triclinic phase or any lattice disorder as conjectured in several earlier reports on compounds belonging to the type I langbeinite. The bond valence sum analyses of the coordination around the Rb sites indicate asymmetry in the bond strengths which could be the driving force of the ferroelectric behavior in these materials.