991 resultados para Rectifying-k Channels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whether the response of the fetal heart to ischemia-reperfusion is associated with activation of the c-Jun N-terminal kinase (JNK) pathway is not known. In contrast, involvement of the sarcolemmal L-type Ca2+ channel (LCC) and the mitochondrial KATP (mitoKATP) channel has been established. This work aimed at investigating the profile of JNK activity during anoxia-reoxygenation and its modulation by LCC and mitoK(ATP) channel. Hearts isolated from 4-day-old chick embryos were submitted to anoxia (30 min) and reoxygenation (60 min). Using the kinase assay method, the profile of JNK activity in the ventricle was determined every 10 min throughout anoxia-reoxygenation. Effects on JNK activity of the LCC blocker verapamil (10 nM), the mitoK(ATP) channel opener diazoxide (50 microM) and the blocker 5-hydroxydecanoate (5-HD, 500 microM), the mitochondrial Ca2+ uniporter (MCU) inhibitor Ru360 (10 microM), and the antioxidant N-(2-mercaptopropionyl) glycine (MPG, 1 mM) were determined. In untreated hearts, JNK activity was increased by 40% during anoxia and peaked fivefold relative to basal level after 30-40 min reoxygenation. This peak value was reduced by half by diazoxide and was tripled by 5-HD. Furthermore, the 5-HD-mediated stimulation of JNK activity during reoxygenation was abolished by diazoxide, verapamil or Ru360. MPG had no effect on JNK activity, whatever the conditions. None of the tested pharmacological agents altered JNK activity under basal normoxic conditions. Thus, in the embryonic heart, JNK activity exhibits a characteristic pattern during anoxia and reoxygenation and the respective open-state of LCC, MCU and mitoKATP channel can be a major determinant of JNK activity in a ROS-independent manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epithelial Na+ channel (ENaC) belongs to a new class of channel proteins called the ENaC/DEG superfamily involved in epithelial Na+ transport, mechanotransduction, and neurotransmission. The role of ENaC in Na+ homeostasis and in the control of blood pressure has been demonstrated recently by the identification of mutations in ENaC beta and gamma subunits causing hypertension. The function of ENaC in Na+ reabsorption depends critically on its ability to discriminate between Na+ and other ions like K+ or Ca2+. ENaC is virtually impermeant to K+ ions, and the molecular basis for its high ionic selectivity is largely unknown. We have identified a conserved Ser residue in the second transmembrane domain of the ENaC alpha subunit (alphaS589), which when mutated allows larger ions such as K+, Rb+, Cs+, and divalent cations to pass through the channel. The relative ion permeability of each of the alphaS589 mutants is related inversely to the ionic radius of the permeant ion, indicating that alphaS589 mutations increase the molecular cutoff of the channel by modifying the pore geometry at the selectivity filter. Proper geometry of the pore is required to tightly accommodate Na+ and Li+ ions and to exclude larger cations. We provide evidence that ENaC discriminates between cations mainly on the basis of their size and the energy of dehydration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé La Na,K-ATPase est une protéine transmembranaire, présente dans toutes les cellules de mammifères et indispensable à la viabilité cellulaire. Elle permet le maintien des gradients sodiques et potassiques à l'origine du potentiel membranaire en transportant 3 Na+ en dehors de la cellule contre 2 K+, grâce à l'énergie fournie par l'hydrolyse d'une molécule d'ATP. Le potentiel membranaire est indispensable au maintien de l'excitabilité cellulaire et à la transmission de l'influx nerveux. Il semblerait que la Na,K-ATPase soit liée à l'hypertension et à certains troubles neurologiques comme la Migraine Familiale Hémiplégique (1VIFH). La MFH est une forme de migraine avec aura, qui se caractérise par une hémiparésie. Cette forme de migraine est très rare. Elle se transmet génétiquement sur un mode autosomique dominant. Plusieurs mutations localisées dans le gène de la Na,K-ATPase ont été identifiées durant ces 3 dernières années. C'est la première fois qu'une maladie génétique est associée au gène de la Na,K-ATPase. La compréhension du fonctionnement de cette protéine peut donner des informations sur les mécanismes conduisant à ces pathologies. On sait que la fonction d'une protéine est liée à sa structure. L'étude de sa fonction nécessite donc l'étude de sa structure. Alors que la structure de la SERCA a été déterminée à haute résolution, par cristallographie, celle de la Na,K-ATPase ne l'est toujours pas. Mais ces 2 ATPases présentent une telle homologie qu'un modèle de la Na,K-ATPase a pu être élaboré à partir de la structure de la SERCA. Les objectifs de cette étude sont d'une part, de comprendre le contrôle de l'accessibilité du K+ extracellulaire àses sites de liaison. Pour cela, nous avons ciblé cette étude sur la 2ìème et la 31eme boucle extracellulaire, qui relient respectivement les segments transmembranaires (STM) 3-4 et 5-6. Le choix s'est porté sur ces 2 boucles car elles bordent le canal des cations formés des 4ième' Sième et 6'ème hélices. D'autre part, nous avons également essayer de comprendre les effets des mutations, liées à la Migraine Familiale Hémiplégique de type 2 (MFH2), sur la fonctionnalité de la Na,K-ATPase. Alors que les STM et les domaines cytoplasmiques sont relativement proches entre la Na,KATPase et la SERCA, les boucles extracellulaires présentent des différences. Le modèle n'est donc pas une approche fiable pour déterminer la structure et la fonction des régions extracellulaires. Nous avons alors utilisé une approche fonctionnelle faisant appel à la mutation dirigée puis à l'étude de l'activité fonctionnelle de la Na,K ATPase par électrophysiologie sur des ovocytes de Xenopus. En conclusion, nous pouvons dire que la troisième boucle extracellulaire participerait à la structure de la voie d'entrée des cations et que la deuxième boucle extracellulaire semble impliquée dans le contrôle de l'accessibilité des ions K+àses sites de liaison. Concernant les mutations associées à la MFH2, nos résultats ont montré une forte diminution de l'activité fonctionnelle de la pompe Na,K, inférieure aux conditions physiologiques de fonctionnement, et pour une des mutations nous avons observés une diminution de l'affmité apparente au K+ externe. Nous poumons faire l'hypothèse que l'origine pathologique de la migraine est liée à une diminution de l'activité de la pompe à Na+. Summary The Na,K-ATPase is a transmembrane protein, present in all mammalian cells and is necessary for the viability of the cells. It maintains the gradients of Na+ and K+ involved in the membrane potential, by transporting 3Na+ out the cell, and 2K+ into the cell, using the energy providing from one ATP molecule hydrolysis. The membrane potential is necessary for the cell excitability and for the transmission of the nervous signal. Some evidence show that Na,K-ATPase is involved in hypertension and neurological disorders like the Familial Hemiplegic Migraine (FHM). La FHM is a rare form of migraine characterised by aura and hemiparesis and an autosomal dominant transmission. Several mutations linked to the Na,KATPase gene have been identified during these 3 last years. It's the first genetic disorder associated with the Na,K-ATPase gene. Understand the function of this protein is important to elucidate the mechanisms implicated in these pathologies. The function of a protein is linked with its structure. Thus, to know the function of a protein, we need to know its structure. While the Ca-ATPase (SERCA) has been crystallised with a high resolution, the structure of the Na,K-ATPase is not known. Because of the great homology between these 2 ATPases, a model of the Na,K-ATPase was realised by comparing with the structure of the SERCA. The aim of this study is on one side, understand the control of the extracellular K+ accessibility to their binding sites. Because of theirs closed proximity with the cation pathway, located between the 4th, 5th and 6th helices, we have targeted this study on the 2nd and the 3rd extracellular loops linking respectively the transmembrane segment (TMS) 3 and 4, and the TMS 5 and 6. And on the other side, we have tried to understand the functional effects of mutations linked with the Familial Hemiplegic Migraine Type 2 (FHM2). In contrast with the transmembrane segments and the cytoplasmic domains, the extracellular loops show lots of difference between Na,K-ATPase and SERCA, the model is not a good approach to know the structure and the function of the extracellular loops. Thus, we have used a functional approach consisting in directed mutagenesis and the study of the functional activity of the Na,K-ATPase by electrophysiological techniques with Xenopus oocytes. In conclusion, we have demonstrated that the third extracellular loop could participate in the structure of the entry of the cations pathway and that the second extracellular loop could control the K+ accessibility to their binding sites. Concerning the mutations associated with the FHM2, our results showed a strong decrease in the functional activity of the Na,K-pump under physiological conditions and for one of mutations, induce a decrease in the apparent external K+ affinity. We could make the hypothesis that the pathogenesis of migraine is related to the decrease in Na,K-pump activity. Résumé au large publique De la même manière que l'assemblage des mots forme des phrases et que l'assemblage des phrases forme des histoires, l'assemblage des cellules forme des organes et l'ensemble des organes constitue les êtres vivants. La fonction d'une cellule dans le corps humain peut se rapprocher de celle d'une usine hydroélectrique. La matière première apportée est l'eau, l'usine électrique va ensuite convertir l'eau en énergie hydraulique pour fournir de l'électricité. Le fonctionnement de base d'une cellule suit le même processus. La cellule a besoin de matières premières (oxygène, nutriments, eau...) pour produire une énergie sous forme chimique, l'ATP. Cette énergie est utilisée par exemple pour contracter les muscles et permet donc à l'individu de se déplacer. Morphologiquement la cellule est une sorte de petit sac rempli de liquide (milieu intracellulaire) baignant elle-même dans le liquide (milieu extracellulaire) composant le corps humain (un adulte est constitué environ de 65 % d'eau). La composition du milieu intracellulaire est différente de celle du milieu extracellulaire. Cette différence doit être maintenue pour que l'organisme fonctionne correctement. Une des différences majeures est la quantité de sodium. En effet il y a beaucoup plus de sodium à l'extérieur qu'à l'intérieur de la cellule. Bien que l'intérieur de la cellule soit isolé de l'extérieur par une membrane, le sodium arrive à passer à travers cette membrane, ce qui a tendance à augmenter la quantité de sodium dans la cellule et donc à diminuer sa différence de concentration entre le milieu extracellulaire et le milieu intracellulaire. Mais dans les membranes, il existe des pompes qui tournent et dont le rôle est de rejeter le sodium de la cellule. Ces pompes sont des protéines connues sous le nom de pompe à sodium ou Na,K-ATPase. On lui attribue le nom de Na,K-ATPase car en réalité elle rejette du sodium (Na) et en échange elle fait entrer dans la cellule du potassium (K), et pour fonctionner elle a besoin d'énergie (ATP). Lorsque les pompes à sodium ne fonctionnent pas bien, cela peut conduire à des maladies. En effet la Migraine Familiale Hémiplégique de type 2, est une migraine très rare qui se caractérise par l'apparition de la paralysie de la moitié d'un corps avant l'apparition du mal de tête. C'est une maladie génétique (altération qui modifie la fonction d'une protéine) qui touche la pompe à sodium située dans le cerveau. On a découvert que certaines altérations (mutations) empêchent les pompes à sodium de fonctionner correctement. On pense alors que le développement des migraines est en partie dû au fait que ces pompes fonctionnent moins bien. Il est important de bien connaître la fonction de ces pompes car cela permet de comprendre des mécanismes pouvant conduire à certaines maladies, comme les migraines. En biologie, la fonction d'une protéine est étudiée à travers sa structure. C'est pourquoi l'objectif de cette thèse a été d'étudier la structure de la Na,K-ATPase afin de mieux comprendre son mécanisme d'action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently discovered epithelial sodium channel (ENaC)/degenerin (DEG) gene family encodes sodium channels involved in various cell functions in metazoans. Subfamilies found in invertebrates or mammals are functionally distinct. The degenerins in Caenorhabditis elegans participate in mechanotransduction in neuronal cells, FaNaC in snails is a ligand-gated channel activated by neuropeptides, and the Drosophila subfamily is expressed in gonads and neurons. In mammals, ENaC mediates Na+ transport in epithelia and is essential for sodium homeostasis. The ASIC genes encode proton-gated cation channels in both the central and peripheral nervous system that could be involved in pain transduction. This review summarizes the physiological roles of the different channels belonging to this family, their biophysical and pharmacological characteristics, and the emerging knowledge of their molecular structure. Although functionally different, the ENaC/DEG family members share functional domains that are involved in the control of channel activity and in the formation of the pore. The functional heterogeneity among the members of the ENaC/DEG channel family provides a unique opportunity to address the molecular basis of basic channel functions such as activation by ligands, mechanotransduction, ionic selectivity, or block by pharmacological ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Controlled transcranial stimulation of the brain is part of clinical treatment strategies in neuropsychiatric diseases such as depression, stroke, or Parkinson's disease. Manipulating brain activity by transcranial stimulation, however, inevitably influences other control centers of various neuronal and neurohormonal feedback loops and therefore may concomitantly affect systemic metabolic regulation. Because hypothalamic adenosine triphosphate-sensitive potassium channels, which function as local energy sensors, are centrally involved in the regulation of glucose homeostasis, we tested whether transcranial direct current stimulation (tDCS) causes an excitation-induced transient neuronal energy depletion and thus influences systemic glucose homeostasis and related neuroendocrine mediators.METHODS: In a crossover design testing 15 healthy male volunteers, we increased neuronal excitation by anodal tDCS versus sham and examined cerebral energy consumption with (31)phosphorus magnetic resonance spectroscopy. Systemic glucose uptake was determined by euglycemic-hyperinsulinemic glucose clamp, and neurohormonal measurements comprised the parameters of the stress systems.RESULTS: We found that anodic tDCS-induced neuronal excitation causes an energetic depletion, as quantified by (31)phosphorus magnetic resonance spectroscopy. Moreover, tDCS-induced cerebral energy consumption promotes systemic glucose tolerance in a standardized euglycemic-hyperinsulinemic glucose clamp procedure and reduces neurohormonal stress axes activity.CONCLUSIONS: Our data demonstrate that transcranial brain stimulation not only evokes alterations in local neuronal processes but also clearly influences downstream metabolic systems regulated by the brain. The beneficial effects of tDCS on metabolic features may thus qualify brain stimulation as a promising nonpharmacologic therapy option for drug-induced or comorbid metabolic disturbances in various neuropsychiatric diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among all sports, football is the one that saw the largest diffusion during the 20th century. Professional leagues exist on all continents and professional footballers are constantly on the move, trying to reach the wealthiest European clubs. Using the football players' market as an example, this article highlights some key features of economic globalization: the new international division of labour, the ever increasing role played by intermediaries to bind the demand and supply of work on a transnational scale, and the setting up of spatially fragmented trade circuits. These processes form the basis for the creation of a global market of footballers in which clubs and championships play complementary roles and are more than ever functionally integrated beyond national borders.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existence of at least three isoforms of Na(+)-K(+)-ATPase in adult brain tissues [alpha 1, kidney type; alpha 2 [or alpha(+)]; alpha 3] suggests that these genes might be regulated in a cell-specific and time-dependent manner during development. We have studied this question in serum-free aggregating cell cultures of mechanically dissociated rat fetal telencephalon. At the protein level, the relative rate of synthesis of the pool of alpha 1-, alpha 2-, and alpha 3-subunits increased approximately twofold over 15 days of culture, leading to a marked increase in the immunochemical pool of alpha-subunits as measured by a panspecific polyclonal antibody. Concomitantly, Na(+)-K(+)-ATPase enzyme-specific activity increased three- (lower forebrain) to sixfold (upper forebrain). The transcripts of all three alpha-isoforms and beta-subunit were detected in vitro in similar proportion to the level observed in vivo. alpha 3-mRNA (3.7 kb) was more abundant than alpha 1 (3.7 kb) or alpha 2 (5.3 and 3.4 kb). Cytosine arabinoside (0.4 microM) and cholera toxin (0.1 microM) were used to selectively eliminate glial cells or neurons, respectively. It was found that alpha 2-mRNA is predominantly transcribed in glial cell cultures, whereas alpha 3- and beta 1-mRNA (2.7, 2.3, and 1.8 kb) are predominant in neuronal cultures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

About sixty small water bodies (coastal lagoons, marshes, salt pans, channels, springs, etc.) of the Spanish Mediterranean coast were sampled seasonally for one year (1979-1980), in order to study different aspects of their chemical composition. The concentrations of major ions (alkalinity, Cl-, Ca2+, Mg2+, Na+, and K+), nutrients (N.NO-3, N.NO2-, TRP and Si), oxygen and pH were determined for this purpose. The salt concentrations measured range between 0.4 and 361.3 g l-1. The samples have been divided into four classes of salinity (in g l-1): Cl, S < 5; C2, 5 40. Within these classes, the pattern of ionic dominance recorded is remarkably constant and similar to that found in most coastal lagoons (Cl- > So42- > Alk., for the anions, and Na+ > Mg2+ > Ca2+ > K+, for the cations), although other models occur especially in the first class. The dominance of Na+ and Cl-, as well as the molar ratios Mg2+/Ca2+ and Cl- / SO42- ,clearly increase from class Cl to class C4. The hyperhaline waters include different subtypes of the major brine type"c",, of EUGSTER & HARDIE (1978), the Na+ - (Mg2+) - Cl- - (SO42-) being the most frequent. Nutrient concentrations fall within a wide range (N.NO3 from 0.1 to 1100 mg-at 1-1; PRT from 0.01 to 23.56 mg-at l-1 and Si from 1.0 to 502.0 mg-at l-1). The oxygen values are very variable too, ranging between 0 and 14.4 ml l-1. Four different patterns of nutrient distribution have been distinguished based on the mean concentrations of N.NO3-, and TRP (mean values in mg-at l-1): A, N.NO3- < 10, TRP > l ; B, N.NO3- > 100, TRP < 1; C, 10 < N.NO3- < 100, TRP < 1; C, D, N.NO3- < 10, TRP < 1. As a rule, lagoons of low salinity (C1 and C2 classes) display the nutrient pattern C, and lagoons of high salinity (C3 and C4) show the nutrient pattern D. Model A only appears in waters of very low salinity, whereas model B does not seem to be related to salinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The membrane organization of the alpha-subunit of purified (Na+ + K+)-ATPase ((Na+ + K+)-dependent adenosine triphosphate phosphorylase, EC 3.6.1.3) and of the microsomal enzyme of the kidney of the toad Bufo marinus was compared by using controlled trypsinolysis. With both enzyme preparations, digestions performed in the presence of Na+ yielded a 73 kDa fragment and in the presence of K+ a 56 kDa, a 40 kDa and small amounts of a 83 kDa fragment from the 96 kDa alpha-subunit. In contrast to mammalian preparations (Jørgensen, P.L. (1975) Biochim. Biophys. Acta 401, 399-415), trypsinolysis of the purified amphibian enzyme led to a biphasic loss of (Na+ + K+)-ATPase activity in the presence of both Na+ and K+. These data could be correlated with an early rapid cleavage of 3 kDa from the alpha-subunit in both ionic conditions and a slower degradation of the remaining 93 kDa polypeptide. On the other hand, in the microsomal enzyme, a 3 kDa shift of the alpha-subunit could only be produced in the presence of Na+. Our data indicate that (1) purification of the amphibian enzyme with detergent does not influence the overall topology of the alpha-subunit but produces a distinct structural alteration of its N-terminus and (2) the amphibian kidney enzyme responds to cations with similar conformational transitions as the mammalian kidney enzyme. In addition, anti alpha-serum used on digested enzyme samples revealed on immunoblots that the 40 kDa fragment was better recognized than the 56 kDa fragment. It is concluded that the NH2-terminal of the alpha-subunit contains more antigenic sites than the COOH-terminal domain in agreement with the results of Farley et al. (Farley, R.A., Ochoa, G.T. and Kudrow, A. (1986) Am. J. Physiol. 250, C896-C906).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Traditions. Afrique du Nord. Maroc]