1000 resultados para Real invariants
Resumo:
Background: There is growing interest in the potential utility of real-time polymerase chain reaction (PCR) in diagnosing bloodstream infection by detecting pathogen deoxyribonucleic acid (DNA) in blood samples within a few hours. SeptiFast (Roche Diagnostics GmBH, Mannheim, Germany) is a multipathogen probe-based system targeting ribosomal DNA sequences of bacteria and fungi. It detects and identifies the commonest pathogens causing bloodstream infection. As background to this study, we report a systematic review of Phase III diagnostic accuracy studies of SeptiFast, which reveals uncertainty about its likely clinical utility based on widespread evidence of deficiencies in study design and reporting with a high risk of bias.
Objective: Determine the accuracy of SeptiFast real-time PCR for the detection of health-care-associated bloodstream infection, against standard microbiological culture.
Design: Prospective multicentre Phase III clinical diagnostic accuracy study using the standards for the reporting of diagnostic accuracy studies criteria.
Setting: Critical care departments within NHS hospitals in the north-west of England.
Participants: Adult patients requiring blood culture (BC) when developing new signs of systemic inflammation.
Main outcome measures: SeptiFast real-time PCR results at species/genus level compared with microbiological culture in association with independent adjudication of infection. Metrics of diagnostic accuracy were derived including sensitivity, specificity, likelihood ratios and predictive values, with their 95% confidence intervals (CIs). Latent class analysis was used to explore the diagnostic performance of culture as a reference standard.
Results: Of 1006 new patient episodes of systemic inflammation in 853 patients, 922 (92%) met the inclusion criteria and provided sufficient information for analysis. Index test assay failure occurred on 69 (7%) occasions. Adult patients had been exposed to a median of 8 days (interquartile range 4–16 days) of hospital care, had high levels of organ support activities and recent antibiotic exposure. SeptiFast real-time PCR, when compared with culture-proven bloodstream infection at species/genus level, had better specificity (85.8%, 95% CI 83.3% to 88.1%) than sensitivity (50%, 95% CI 39.1% to 60.8%). When compared with pooled diagnostic metrics derived from our systematic review, our clinical study revealed lower test accuracy of SeptiFast real-time PCR, mainly as a result of low diagnostic sensitivity. There was a low prevalence of BC-proven pathogens in these patients (9.2%, 95% CI 7.4% to 11.2%) such that the post-test probabilities of both a positive (26.3%, 95% CI 19.8% to 33.7%) and a negative SeptiFast test (5.6%, 95% CI 4.1% to 7.4%) indicate the potential limitations of this technology in the diagnosis of bloodstream infection. However, latent class analysis indicates that BC has a low sensitivity, questioning its relevance as a reference test in this setting. Using this analysis approach, the sensitivity of the SeptiFast test was low but also appeared significantly better than BC. Blood samples identified as positive by either culture or SeptiFast real-time PCR were associated with a high probability (> 95%) of infection, indicating higher diagnostic rule-in utility than was apparent using conventional analyses of diagnostic accuracy.
Conclusion: SeptiFast real-time PCR on blood samples may have rapid rule-in utility for the diagnosis of health-care-associated bloodstream infection but the lack of sensitivity is a significant limiting factor. Innovations aimed at improved diagnostic sensitivity of real-time PCR in this setting are urgently required. Future work recommendations include technology developments to improve the efficiency of pathogen DNA extraction and the capacity to detect a much broader range of pathogens and drug resistance genes and the application of new statistical approaches able to more reliably assess test performance in situation where the reference standard (e.g. blood culture in the setting of high antimicrobial use) is prone to error.
Resumo:
This paper presents a novel hand-held instrument capable of real-time in situ detection and identification of heavy metals. The proposed system provides the facilities found in a traditional lab-based instrument in a hand held a design. In contrast to existing commercial systems, it can stand alone without the need of an associated computer. The electrochemical instrument uses anodic stripping voltammetry which is a precise and sensitive analytical method with excellent limits of detection. The sensors comprise disposable screen-printed (solid working) electrodes rather than the more common hanging mercury drop electrodes. The system is reliable, easy to use, safe, avoids expensive and time-consuming procedures and may be used in a variety of situations to help in the fields of environmental assessment and control.
Resumo:
Sonoluminescence (SL) involves the conversion of mechanical [ultra]sound energy into light. Whilst the phenomenon is invariably inefficient, typically converting just 10-4 of the incident acoustic energy into photons, it is nonetheless extraordinary, as the resultant energy density of the emergent photons exceeds that of the ultrasonic driving field by a factor of some 10 12. Sonoluminescence has specific [as yet untapped] advantages in that it can be effected at remote locations in an essentially wireless format. The only [usual] requirement is energy transduction via the violent oscillation of microscopic bubbles within the propagating medium. The dependence of sonoluminescent output on the generating sound field's parameters, such as pulse duration, duty cycle, and position within the field, have been observed and measured previously, and several relevant aspects are discussed presently. We also extrapolate the logic from a recently published analysis relating to the ensuing dynamics of bubble 'clouds' that have been stimulated by ultrasound. Here, the intention was to develop a relevant [yet computationally simplistic] model that captured the essential physical qualities expected from real sonoluminescent microbubble clouds. We focused on the inferred temporal characteristics of SL light output from a population of such bubbles, subjected to intermediate [0.5-2MPa] ultrasonic pressures. Finally, whilst direct applications for sonoluminescent light output are thought unlikely in the main, we proceed to frame the state-of-the- art against several presently existing technologies that could form adjunct approaches with distinct potential for enhancing present sonoluminescent light output that may prove useful in real world [biomedical] applications.
Resumo:
premiered by Mel Puga Iglesias
Resumo:
Game-theoretic security resource allocation problems have generated significant interest in the area of designing and developing security systems. These approaches traditionally utilize the Stackelberg game model for security resource scheduling in order to improve the protection of critical assets. The basic assumption in Stackelberg games is that a defender will act first, then an attacker will choose their best response after observing the defender’s strategy commitment (e.g., protecting a specific asset). Thus, it requires an attacker’s full or partial observation of a defender’s strategy. This assumption is unrealistic in real-time threat recognition and prevention. In this paper, we propose a new solution concept (i.e., a method to predict how a game will be played) for deriving the defender’s optimal strategy based on the principle of acceptable costs of minimax regret. Moreover, we demonstrate the advantages of this solution concept by analyzing its properties.
An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries
Resumo:
Lithium-ion batteries have been widely adopted in electric vehicles (EVs), and accurate state of charge (SOC) estimation is of paramount importance for the EV battery management system. Though a number of methods have been proposed, the SOC estimation for Lithium-ion batteries, such as LiFePo4 battery, however, faces two key challenges: the flat open circuit voltage (OCV) vs SOC relationship for some SOC ranges and the hysteresis effect. To address these problems, an integrated approach for real-time model-based SOC estimation of Lithium-ion batteries is proposed in this paper. Firstly, an auto-regression model is adopted to reproduce the battery terminal behaviour, combined with a non-linear complementary model to capture the hysteresis effect. The model parameters, including linear parameters and non-linear parameters, are optimized off-line using a hybrid optimization method that combines a meta-heuristic method (i.e., the teaching learning based optimization method) and the least square method. Secondly, using the trained model, two real-time model-based SOC estimation methods are presented, one based on the real-time battery OCV regression model achieved through weighted recursive least square method, and the other based on the state estimation using the extended Kalman filter method (EKF). To tackle the problem caused by the flat OCV-vs-SOC segments when the OCV-based SOC estimation method is adopted, a method combining the coulombic counting and the OCV-based method is proposed. Finally, modelling results and SOC estimation results are presented and analysed using the data collected from LiFePo4 battery cell. The results confirmed the effectiveness of the proposed approach, in particular the joint-EKF method.
Resumo:
Models of complex systems with n components typically have order n<sup>2</sup> parameters because each component can potentially interact with every other. When it is impractical to measure these parameters, one may choose random parameter values and study the emergent statistical properties at the system level. Many influential results in theoretical ecology have been derived from two key assumptions: that species interact with random partners at random intensities and that intraspecific competition is comparable between species. Under these assumptions, community dynamics can be described by a community matrix that is often amenable to mathematical analysis. We combine empirical data with mathematical theory to show that both of these assumptions lead to results that must be interpreted with caution. We examine 21 empirically derived community matrices constructed using three established, independent methods. The empirically derived systems are more stable by orders of magnitude than results from random matrices. This consistent disparity is not explained by existing results on predator-prey interactions. We investigate the key properties of empirical community matrices that distinguish them from random matrices. We show that network topology is less important than the relationship between a species’ trophic position within the food web and its interaction strengths. We identify key features of empirical networks that must be preserved if random matrix models are to capture the features of real ecosystems.
Resumo:
We present a mathematically rigorous Quality-of-Service (QoS) metric which relates the achievable quality of service metric (QoS) for a real-time analytics service to the server energy cost of offering the service. Using a new iso-QoS evaluation methodology, we scale server resources to meet QoS targets and directly rank the servers in terms of their energy-efficiency and by extension cost of ownership. Our metric and method are platform-independent and enable fair comparison of datacenter compute servers with significant architectural diversity, including micro-servers. We deploy our metric and methodology to compare three servers running financial option pricing workloads on real-life market data. We find that server ranking is sensitive to data inputs and desired QoS level and that although scale-out micro-servers can be up to two times more energy-efficient than conventional heavyweight servers for the same target QoS, they are still six times less energy efficient than high-performance computational accelerators.
Resumo:
In order to use virtual reality as a sport analysis tool, we need to be sure that an immersed athlete reacts realistically in a virtual environment. This has been validated for a real handball goalkeeper facing a virtual thrower. However, we currently ignore which visual variables induce a realistic motor behavior of the immersed handball goalkeeper. In this study, we used virtual reality to dissociate the visual information related to the movements of the player from the visual information related to the trajectory of the ball. Thus, the aim is to evaluate the relative influence of these different visual information sources on the goalkeeper's motor behavior. We tested 10 handball goalkeepers who had to predict the final position of the virtual ball in the goal when facing the following: only the throwing action of the attacking player (TA condition), only the resulting ball trajectory (BA condition), and both the throwing action of the attacking player and the resulting ball trajectory (TB condition). Here we show that performance was better in the BA and TB conditions, but contrary to expectations, performance was substantially worse in the TA condition. A significant effect of ball landing zone does, however, suggest that the relative importance between visual information from the player and the ball depends on the targeted zone in the goal. In some cases, body-based cues embedded in the throwing actions may have a minor influence on the ball trajectory and vice versa. Kinematics analysis was then combined with these results to determine why such differences occur depending on the ball landing zone and consequently how it can clarify the role of different sources of visual information on the motor behavior of an athlete immersed in a virtual environment.
Resumo:
We present a rigorous methodology and new metrics for fair comparison of server and microserver platforms. Deploying our methodology and metrics, we compare a microserver with ARM cores against two servers with ×86 cores running the same real-time financial analytics workload. We define workload-specific but platform-independent performance metrics for platform comparison, targeting both datacenter operators and end users. Our methodology establishes that a server based on the Xeon Phi co-processor delivers the highest performance and energy efficiency. However, by scaling out energy-efficient microservers, we achieve competitive or better energy efficiency than a power-equivalent server with two Sandy Bridge sockets, despite the microserver's slower cores. Using a new iso-QoS metric, we find that the ARM microserver scales enough to meet market throughput demand, that is, a 100% QoS in terms of timely option pricing, with as little as 55% of the energy consumed by the Sandy Bridge server.
Resumo:
Monitoring of BCR-ABL transcripts has become established practice in the management of chronic myeloid leukemia. However, nucleic acid amplification techniques are prone to variations which limit the reliability of real-time quantitative PCR (RQ-PCR) for clinical decision making, highlighting the need for standardization of assays and reporting of minimal residual disease (MRD) data. We evaluated a lyophilized preparation of a leukemic cell line (K562) as a potential quality control reagent. This was found to be relatively stable, yielding comparable respective levels of ABL, GUS and BCR-ABL transcripts as determined by RQ-PCR before and after accelerated degradation experiments as well as following 5 years storage at -20 degrees C. Vials of freeze-dried cells were sent at ambient temperature to 22 laboratories on four continents, with RQ-PCR analyses detecting BCR-ABL transcripts at levels comparable to those observed in primary patient samples. Our results suggest that freeze-dried cells can be used as quality control reagents with a range of analytical instrumentations and could enable the development of urgently needed international standards simulating clinically relevant levels of MRD.
Resumo:
Service user and carer involvement (SUCI) in social work education in England is required by the profession’s regulator, the Health and Care Professions Council. However, a recent study of 83 HEIs in England reported that despite considerable progress in SUCI, there is no evidence that the learning derived from it is being transferred to social work practice. In this article we describe a study that examines the question: ‘What impact does SUCI have on the skills, knowledge and values of student social workers at the point of qualification and beyond?’ Students at universities in England and Northern Ireland completed online questionnaires and participated in focus groups, spanning a period immediately pre-qualification and between six to nine months post-qualification. From our findings, we identify four categories that influence the impact of service user involvement on students’ learning: student factors; service user and carer factors; programme factors; and practice factors; each comprises of a number of sub-categories. We propose that the model developed can be used by social work educators, service user and carer contributors and practitioners to maximise the impact of SUCI. We argue that our findings also have implications for employment-based learning routes and post-qualifying education.