1000 resultados para Radiocarbon


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents newly obtained coral ages of the cold-water corals Lophelia pertusa and Madrepora oculata collected in the Alboran Sea and the Strait of Sicily (Urania Bank). These data were combined with all available Mediterranean Lophelia and Madrepora ages compiled from literature to conduct a basin-wide assessment of the spatial and temporal occurrence of these prominent framework-forming scleractinian species in the Mediterranean realm and to unravel the palaeo-environmental conditions that controlled their proliferation or decline. For the first time special focus was placed on a closer examination of potential differences occurring between the eastern and western Mediterranean sub-basins. Our results clearly demonstrate that cold-water corals occurred sparsely in the entire Mediterranean during the last glacial before becoming abundant during the Bølling-Allerød warm interval, pointing to a basin-wide, almost concurrent onset in (re-)colonisation after ~13.5 ka. This time coincides with a peak in meltwater discharge originating from the northern Mediterranean borderlands which caused a major reorganisation of the Mediterranean thermohaline circulation. During the Younger Dryas and Holocene, some striking differences in coral proliferation were identified between the sub-basins such as periods of highly prolific coral growth in the eastern Mediterranean Sea during the Younger Dryas and in the western basin during the Early Holocene, whereas a temporary pronounced coral decline during the Younger Dryas was exclusively affecting coral sites in the Alboran Sea. Comparison with environmental and oceanographic data revealed that the proliferation of the Mediterranean corals is linked with enhanced productivity conditions. Moreover, corals thrived in intermediate depths and showed a close relationship with intermediate water mass circulation in the Mediterranean sub-basins. For instance, reduced Levantine Intermediate Water formation hampered coral growth in the eastern Mediterranean Sea during sapropel S1 event as reduced Winter Intermediate Water formation did in the westernmost part of the Mediterranean (Alboran Sea) during the Mid-Holocene. Overall, this study clearly demonstrates the importance to consider region-specific environmental changes as well as species-specific environmental preferences in interpreting coral chronologies. Moreover, it highlights that the occurrence or decline of cold-water corals is not controlled by one key parameter but rather by a complex interplay of various environmental variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental changes in the surface and bottom water layers of the Ingøydjupet Basin and history of Atlantic water inflow to the southwestern Barents Sea during the last 16 ka are reconstructed on the base of planktic and benthic foraminiferal assemblages. A multiproxy study of sediment cores PSh-5159R and PSh-5159N, including AMS 14C dating, provides time resolution of about 200 years for the deglaciation period, 100 years for Holocene, and 25-50 years for the last 400 years. Stable polar conditions with sea ice on the surface were typical for the early deglaciation period. Unstable bottom settings and onset of ice rafting marked Oldest Dryas. Cold Atlantic water inflow increased notably during the Boiling-Allerod interstadial nearby the site location and then decreased during the Younger Dryas. Early Holocene was characterized by abrupt warming in the bottom and surface water layers, especially ~9.7-7.6 ka BP. Stable conditions prevailed during Middle Holocene. Remarkable changes in the sea-surface temperature and bottom environments occurred during last 2.5 cal. ka BP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that sediments accumulated in the Southern Novaya Zemlya Trench at both deglaciation and marine stages. Permanent sea ice sheet existed during the deglaciation, and glacier meltwater was intensely delivered to the bottom layer. Along with the dominant sediment supply from the Southern Island of Novaya Zemlya, southern continental sources also played a noticeable role at that stage. Seasonal sea ice freezing led to the formation of cold brines at the marine stage. Like paleoproductivity, these processes were irregular. Dissolution of calcareous benthic foraminiferal tests considerably intensified after about 7 ka BP owing to a stronger Atlantic water advection into the Western Arctic and consequent increase in paleoproductivity, whereas the relative role of southern sedimentary provenances decreased. Sedimentation rates were constant (45 cm/ka) during the entire marine stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Core PSh-2510 (4.76 m long) recovered mud and clay of the Baltic Ice Lake and of all subsequent stages of the Baltic Sea. Grain size, mineral and chemical compositions, as well as physical properties of sediments were studied. Biostratigraphic (diatoms and foraminifers), lithostratigraphic, and chemical (26 elements) methods, as well as radiocarbon datings were used to subdivide core sections into stratigraphic units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relative to the past 2,000 years, the Arctic region has warmed significantly over the past few decades. However, the evolution of Arctic temperatures during the rest of the Holocene is less clear. Proxy reconstructions, suggest a long-term cooling trend throughout the mid- to late Holocene, whereas climate model simulations show only minor changes or even warming. Here we present a record of the oxygen isotope composition of permafrost ice wedges from the Lena River Delta in the Siberian Arctic. The isotope values, which reflect winter season temperatures, became progressively more enriched over the past 7,000 years, reaching unprecedented levels in the past five decades. This warming trend during the mid- to late Holocene is in opposition to the cooling seen in other proxy records. However, most of these existing proxy records are biased towards summer temperatures. We argue that the opposing trends are related to the seasonally different orbital forcing over this interval. Furthermore, our reconstructed trend as well as the recent maximum are consistent with the greenhouse gas forcing and climate model simulations, thus reconciling differing estimates of Arctic and northern high-latitude temperature evolution during the Holocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

North American freshwater runoff records have been used to support the case that climate flickers were caused by shutdowns of the ocean thermohaline circulation (THC) resulting from reversals of meltwater discharges. Inconsistencies in the documentation of these meltwater switches, however, continue to fuel the debate on the cause/s of the oscillatory nature of the deglacial climate. New oxygen and carbon isotope records from the northern Gulf of Mexico depict in exceptional detail the succession of meltwater floods and pauses through the southern routing during the interval 16 to 8.9 ka (14C years BP; ka, kiloannum). The records underscore the bimodal role played by the Gulf of Mexico as a destination of meltwater discharges from the receding Laurentide Ice Sheet. The evidence indicates that the Gulf of Mexico acted as the principal source of superfloods at 13.4, 12.6, and 11.9 ka that reached the North Atlantic and contributed significantly to density stratification, disruption of ocean ventilation, and cold reversals. Gulf of Mexico lapsed into a "relief valve" position in post-Younger Dryas time, when meltwater discharges were rerouted south at 9.9, 9.7, 9.4, and 9.1 ka, thus temporarily interrupting North Atlantic-bound freshwater discharges from Lake Agassiz. The history of meltwater events in the Gulf of Mexico contradicts the model that meltwater flow via the eastern outlets into the North Atlantic disrupted the ocean THC, causing cooling, while diversions to the Gulf of Mexico via the Mississippi River enhanced THC and warming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chloropigments and their derivative pheopigments preserved in sediments can directly be linked to photosynthesis. Their carbon and nitrogen stable isotopic compositions have been shown to be a good recorder of recent and past surface ocean environmental conditions tracing the carbon and nitrogen sources and dominant assimilation processes of the phytoplanktonic community. In this study we report results from combined compound-specific radiocarbon and stable carbon and nitrogen isotope analysis to examine the time-scales of synthesis and fate of chlorophyll-a and its degradation products pheophytin-a, pyropheophytin-a, and 132,173-cyclopheophorbide-a-enol until burial in Black Sea core-top sediments. The pigments are mainly of marine phytoplanktonic origin as implied by their stable isotopic compositions. Pigment ?15N values indicate nitrate as the major uptake substrate but 15N-depletion towards the open marine setting indicates either contribution from N2-fixation or direct uptake of ammonium from deeper waters. Radiocarbon concentrations translate into minimum and maximum pigment ages of approximately 40 to 1200 years. This implies that protective mechanisms against decomposition such as association with minerals, storage in deltaic anoxic environments, or eutrophication-induced hypoxia and light limitation are much more efficient than previously thought. Moreover, seasonal variations of nutrient source, growth period, and habitat and their associated isotopic variability are likely at least as strong as long-term trends. Combined triple isotope analysis of sedimentary chlorophyll and its primary derivatives is a powerful tool to delineate biogeochemical and diagenetic processes in the surface water and sediments, and to assess their precise time-scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we utilize two organic geochemical proxies, the Uk'37 index and TEX86, to examine past sea surface temperatures (SST) from a site located near the Nile River Delta in the eastern Mediterranean (EM) Sea. The Uk'37 and TEX86 records generally are in agreement and indicate SST ranges of 14°C-26°C and 14°C-28°C, respectively, during the last 27 cal ka. During the Holocene, TEX86-based SST estimates are usually higher than Uk'37-based SST estimates, which is likely due to seasonal differences between the timing of the haptophyte and crenarchaeota blooms in the EM and is related to the onset of the modern flow regime of the Nile River. Both records show that SST varied on centennial to millennial timescales in response to global climate events, i.e., cooling during the Last Glacial Maximum (LGM), Heinrich event 1 (H1), and the Younger Dryas (YD) and warming during the Bølling-Allerød and in the early Holocene during deposition of sapropel S1. The H1 cooling was particularly severe and is marked by a drop in SST of ~4.5°C in comparison to pre-H1 SST, with temperatures >1°C cooler than during the LGM. In contrast to high-latitude and western Mediterranean records, which indicate both an abrupt onset and termination of the YD event, the transition from the YD to the Holocene was much more gradual in the EM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated. Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aeolian and fluvial sediment transport to the Atlantic Ocean offshore Mauritania were reconstructed based on grain-size distributions of the carbonate-free silt fraction of three marine sediment records of Cap Timiris Canyon to monitor the climatic evolution of present-day arid north-western Africa. During the late Pleistocene, predominantly coarse-grained particles, which are interpreted as windborne dust, characterise glacial dry climate conditions with a low sea level and extended sand seas that reach onto the exposed continental shelf off Mauritania. Subsequent particle fining and the abrupt decrease in terrigenous supply are attributed to humid climate conditions and dune stabilisation on the adjacent African continent with the onset of the Holocene humid period. Indications for an ancient drainage system, which was discharging fluvial mud offshore via Cap Timiris Canyon, are provided by the finest end member for early to mid Holocene times. However, in comparison to the Senegal and Niger River further south, the river system connecting Cap Timiris Canyon with the Mauritanian hinterland was starved during the late Holocene and is non-discharging under present-day arid climate conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on a radiocarbon and paleomagnetically dated sediment record from the northern Red Sea and the exceptional sensitivity of the regional changes in the oxygen isotope composition of sea water to the sea-level-dependent water exchange with the Indian Ocean, we provide a new global sea-level reconstruction spanning the last glacial period. The sea-level record has been extracted from the temperature-corrected benthic stable oxygen isotopes using coral-based sea-level data as constraints for the sea-level/oxygen isotope relationship. Although, the general features of this millennial-scale sea-level records have strong similarities to the rather symmetric and gradual Southern Hemisphere climate patterns, we observe, in constrast to previous findings, pronounced sea level rises of up to 25 m to generally correspond with Northern Hemisphere warmings as recorded in Greenland ice-core interstadial intervals whereas sea-level lowstands mostly occur during cold phases. Corroborated by CLIMBER-2 model results, the close connection of millennial-scale sea-level changes to Northern Hemisphere temperature variations indicates a primary climatic control on the mass balance of the major Northern Hemisphere ice sheets and does not require a considerable Antarctic contribution.