965 resultados para RADIATION-INDUCED DEFECTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Unaccustomed eccentric exercise often results in muscle damage and neutrophil activation. We examined changes in plasma cytokines stress hormones, creatine kinase activity and myoglobin concentration, neutrophil surface receptor expression, degranulation, and the capacity of neutrophils to generate reactive oxygen species in response to in vitro stimulation after downhill running. Methods: Ten well-trained male runners ran downhill on a treadmill at a gradient of -10% for 45 min at 60% V̇O2max. Blood was sampled immediately before (PRE) and after (POST), 1 h (1 h POST), and 24 h (24 h POST) after exercise. Results: At POST, there were significant increases (P < 0.01) in neutrophil count (32%), plasma interleukin (IL)-6 concentration (460%), myoglobin (Mb) concentration (1100%), and creatine kinase (CK) activity (40%). At 1 h POST, there were further increases above preexercise values for neutrophil count (85%), plasma Mb levels (1800%), and CK activity (56%), and plasma IL-6 concentration remained above preexercise values (410%) (P < 0.01). At 24 h POST, neutrophil counts and plasma IL-6 levels had returned to baseline, whereas plasma Mb concentration (100%) and CK activity (420%) were elevated above preexercise values (P < 0.01). There were no significant changes in neutrophil receptor expression, degranulation and respiratory burst activity, and plasma IL-8 and granulocyte-colony stimulating factor concentrations at any time after exercise. Neutrophil count correlated with plasma Mb concentration at POST (r = 0.64, P < 0.05), and with plasma CK activity at POST (r = 0.83, P < 0.01) and 1 h POST (r = 0.78, P < 0.01). Conclusion: Neutrophil activation remains unchanged after downhill running in well-trained runners, despite increases in plasma markers of muscle damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutrophils produce free radicals known as reactive oxygen species (ROS), which assist in the clearance of damaged host tissue. Tissue damage may occur during exercise due to muscle damage, thermal stress and ischaemia/reperfusion. When produced in excess, neutrophil-derived ROS may overwhelm the body's endogenous antioxidant defence mechanisms, and this can lead to oxidative stress. There is increasing evidence for links between oxidative stress and a variety of pathological disorders such as cardiovascular diseases, cancer, chronic inflammatory diseases and post-ischaemic organ injury. A small number of studies have investigated whether there is a link between neutrophil activation and oxidative stress during exercise. In this review, we have summarised the findings of these studies. Exercise promotes the release of neutrophils into the circulation, and some evidence suggests that neutrophils mobilised after exercise have an enhanced capacity to generate some forms of ROS when stimulated in vitro. Neutrophil activation during exercise may challenge endogenous antioxidant defence mechanisms, but does not appear to increase lipid markers of oxidative stress to any significant degree, at least in the circulation. Antioxidant supplements such as N-acetylcysteine are effective at attenuating increases in the capacity of neutrophils to generate ROS when stimulated in vitro, whereas vitamin E reduces tissue infiltration of neutrophils during exercise. Free radicals generated during intense exercise may lead to DNA damage in leukocytes, but it is unknown if this damage is the result of neutrophil activation. Exercise enhances the expression of inducible haem (heme)-oxygenase (HO-1) in neutrophils after exercise, however, it is uncertain whether oxidative stress is the stimulus for this response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutrophils constitute 50-60% of all circulating leukocytes; they present the first line of microbicidal defense and are involved in inflammatory responses. To examine immunocompetence in athletes, numerous studies have investigated the effects of exercise on the number of circulating neutrophils and their response to stimulation by chemotactic stimuli and activating factors. Exercise causes a biphasic increase in the number of neutrophils in the blood, arising from increases in catecholamine and cortisol concentrations. Moderate intensity exercise may enhance neutrophil respiratory burst activity, possibly through increases in the concentrations of growth hormone and the inflammatory cytokine IL-6. In contrast, intense or long duration exercise may suppress neutrophil degranulation and the production of reactive oxidants via elevated circulating concentrations of epinephrine (adrenaline) and cortisol. There is evidence of neutrophil degranulation and activation of the respiratory burst following exercise-induced muscle damage. In principle, improved responsiveness of neutrophils to stimulation following exercise of moderate intensity could mean that individuals participating in moderate exercise may have improved resistance to infection. Conversely, competitive athletes undertaking regular intense exercise may be at greater risk of contracting illness. However, there are limited data to support this concept. To elucidate the cellular mechanisms involved in the neutrophil responses to exercise, researchers have examined changes in the expression of cell membrane receptors, the production and release of reactive oxidants and more recently, calcium signaling. The investigation of possible modifications of other signal transduction events following exercise has not been possible because of current methodological limitations. At present, variation in exercise-induced alterations in neutrophil function appears to be due to differences in exercise protocols, training status, sampling points and laboratory assay techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Periodontitis results from the destructive inflammatory reaction of the host elicited by a bacterial biofilm adhering to the tooth surface and if left untreated, may lead to the loss of the teeth and the surrounding tissues, including the alveolar bone. Cementum is a specialized calcified tissue covering the tooth root and an essential part of the periodontium which enables the attachment of the periodontal ligament to the root and the surrounding alveolar bone. Periodontal ligament cells (PDLCs) represent a promising cell source for periodontal tissue engineering. Since cementogenesis is the critical event for the regeneration of periodontal tissues, this study examined whether inorganic stimuli derived from bioactive bredigite (Ca7MgSi4O16) bioceramics could stimulate the proliferation and cementogenic differentiation of PDLCs, and further investigated the involvement of the Wnt/β-catenin signalling pathway during this process via analysing gene/protein expression of PDLCs which interacted with bredigite extracts. Our results showed that the ionic products from bredigite powder extracts led to significantly enhanced proliferation and cementogenic differentiation, including mineralization–nodule formation, ALP activity and a series of bone/cementum-related gene/protein expression (ALP, OPN, OCN, BSP, CAP and CEMP1) of PDLCs in a concentration dependent manner. Furthermore, the addition of cardamonin, a Wnt/β-catenin signalling inhibitor, reduced the pro-cementogenesis effect of the bredigite extracts, indicating the involvement of the Wnt/β-catenin signalling pathway in the cementogenesis of PDLCs induced by bredigite extracts. The present study suggests that an entirely inorganic stimulus with a specific composition of bredigite bioceramics possesses the capacity to trigger the activation of the Wnt/β-catenin signalling pathway, leading to stimulated differentiation of PDLCs toward a cementogenic lineage. The results indicate the therapeutic potential of bredigite ceramics in periodontal tissue engineering application.