996 resultados para Proton conductivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A measurement of the exclusive two-photon production of muon pairs in proton-proton collisions at root s = 7 TeV, pp -> p mu(+)mu(-) p, is reported using data corresponding to an integrated luminosity of 40 pb-1. For muon pairs with invariant mass greater than 11.5 GeV, transverse momentum p(T)(mu) > 4 GeV and pseudorapidity 1770.1) < 2.1, a fit to the dimuon p(T)(mu(+)mu(-)) distribution results in a measured cross section of sigma(p -> p mu(+)mu(-) p) - 3.38(-0.55)(+0.58) (stat.)+/- 0.16 (syst.) +/- 0.14 (lumi.) pb, consistent with the theoretical prediction evaluated with the event generator LPAIR. The ratio to the predicted cross section is 0.83+(0.14)(-0.13) (stat.) +/- 0.04 (syst.) +/- 0.03 (lumi.). The characteristic distributions of the muon pairs produced via Ty fusion, such as the muon acoplanarity, the muon pair invariant mass and transverse momentum agree with those from the theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical conductivity of Mn doped SnO2 systems prepared by an organic route (Pechini's method) has been investigated as a function of antimony and niobium concentration. The conductivity increases with the increase of both concentration ions, however, in a different manner. While the conductivity of niobium doped ceramics increases with the power of 1.6 for the entire range of concentrations studied (0.01-0.7 mol%), the conductivity of antimony doped ceramics increases with the power of 1.9 in the range 0.01-0.05 mol% of Sb; 3.7 in the range 0.05-0.30 mol% and 1.8 in the range 0.30-0.70 mol%. This behavior is attributed to the existence of two stable oxidation states for antimony: Sb3+ and Sb5+, while for niobium there is only one: Nb5+. The power of 3.7 for Sb would be related to the segregation of this ion on the grain boundary accompanied by an additional contribution coming from the substitution of Sn2+ by Sb3+ on the grain surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dyson's theory of conduction electron spin resonance (CESR) has been used in the limit d less than or equal to delta (d being the thickness of the sample and delta the skin depth of the microwave field) to obtain the microwave conductivity from the (A/B) ratio of the CESR absorbed power derivative. In this work we calculate the CESR absorbed power derivative using Kaplan's approach and show that the (A/B) ratio can be enhanced if asymmetrical penetration of microwave is used, which means that the microwave field enters into the sample from one of the faces. Therefore, the determination of the microwave conductivity from the (A/B) ratio of the CESR line can be performed for thinner samples. Experimentally, asymmetrical penetration can be obtained if one of the sample's faces is covered with a thin gold layer. The determination of microwave conductivity in conducting polymers films is among the possible applications of this method. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electric properties of the sodium niobate perovskite ceramic were investigated by impedance spectroscopy in the frequency range from 5 Hz to 13 MHz and from room temperature up to 1073 K, in a thermal cycle. Both capacitance and conductivity exhibit an anomaly at around 600 K as a function of the temperature and frequency. The electric conductivity as a function of angular frequency sigma(omega) follows the relation sigma(omega)=Aomega(s). The values of the exponent s lie in the range 0.15less than or equal tosless than or equal to0.44. These results were discussed considering the conduction mechanism as being a type of polaron hopping. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of nonlinear scalar field couplings on elastic proton-nucleus scattering observables are investigated using a relativistic impulse approximation. Nonlinear couplings affect in a nontrivial way the effective nucleon mass and the nuclear scalar and vector densities. Modifications on the densities might have observable consequences on scattering observables. Our investigation indicates that the description of the observables for the reactions p-O-16 and p-Ca-40 at 200 MeV are not greatly modified with the use of nonlinear models in comparison with the description using linear models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Siloxane-polypropyleneoxide (PPO) hybrids doped with sodium perchlorate (NaClO4) obtained by the sol-gel process were prepared with two PPO molecular weights (2000 and 4000 g/mol) and two sodium concentrations such as [O]/[Na] = 4 and 15 (O being the ether-type oxygen of PPO chains). The structure of these hybrids was investigated by Na-23 nuclear magnetic resonance (NMR) and X-ray absorption spectroscopy at the sodium K-edge (1071.8 eV) whereas complex impedance spectroscopy was used to determine their ionic conductivity. Three sodium sites were determined by NMR. The conjunction of NMR and X-ray absorption results allows us to identify one site in which Na is in a NaCl structure, a second one in which Na is in contact with perchlorate anions. The third site is attributed to mobile sodium species in interaction with the polymeric chain. The relative proportion of the different sites in the materials determines the ionic conductivity of the materials at room temperature: the largest ionic conductivity is 8.9 x 10(-6) Omega(-1) cm(-1) and is observed on the material with the larger amount (at least 85%) of sites in which sodium interacts with the polymer. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steady-state concentric cylinder equipment was used to determine the effective thermal conductivity of beans (Phaseolus vulgaris). The measuring cell had no heated end guards and its length to diameter ratio was 10.5. Glass beads were employed to assess the accuracy and repeatability of the experimental system under heat transfer conditions. The results agree well with those reported in the literature so that the system can be considered reliable. Corn was used to verify the system's accuracy under heat and mass transfer conditions. Again the results were satisfactory. Moisture migration was observed and measured during the tests with beans, but this behavior does not compromise thermal conductivity values if both thermal and mass transfer steady-states are correctly interpreted. The effective thermal conductivity increases linearly with increasing grain moisture content. Statistical regression leads to good estimates of the fitted parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conductivity behavior of the Bi12TiO20 single crystal was investigated by the electric modulus spectroscopy, which was carried out in the frequency range from 5 Hz to 13 MHz and at temperatures higher than 400 degrees C. The resistance curve exhibits a set of properties correlated to a negative temperature coefficient thermistor. In the temperature range investigated, the characteristic parameter (,8) of the thermistor is equal to 4834 degrees C. Temperature coefficients of the resistance (a) were derived being equal to -3.02 x 10(-2) degrees C-1 at 400 degrees C and equal to -9.86 x 10(-3) degrees C-1 at 700 degrees C. The nature of the electric relaxation phenomenon and magnitude dc conductivity are approached. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of the ZrO(2):8 mol % Y(2)O(3)/NiO (YSZ/NiO) composites by a modified liquid mixture technique is reported. Nanometric NiO particles dispersed over the yttria-stabilized zirconia (YSZ) were prepared, resulting in dense sintered specimens with no solid solution formation between the oxides. Such a feature allowed for the electrical characterization of the composites in a wide range of relative volume fraction, temperature, and oxygen partial pressure. The main results indicate that the composites have high electrical conductivity, and the transport properties in these mixed ionic-electronic (MIEC) composites are strongly dependent on the relative volume fraction of the phases, microstructure, and temperature. These parameters should hence be taken into consideration for the optimized design of MIEC composites for electrochemical applications. In this context, the composite was reduced under H(2) for the preparation of high-conductivity YSZ/Ni cermets for use as solid oxide fuel cell anode material with relatively low metal content. (c) 2005 the Electrochemical Society. [DOI:10.1149/1.2149312] All rights reserved.