968 resultados para Protein Sequence Analysis
Resumo:
BACKGROUND: At least 2 apparently independent mechanisms, microsatellite instability (MSI) and chromosomal instability, are implicated in colorectal tumorigenesis. Their respective roles in predicting clinical outcomes of patients with T3N0 colorectal cancer remain unknown. METHODS: Eighty-eight patients with a sporadic T3N0 colon or rectal adenocarcinoma were followed up for a median of 67 months. For chromosomal instability analysis, Ki-ras mutations were determined by single-strand polymerase chain reaction, and p53 protein staining was studied by immunohistochemistry. For MSI analysis, DNA was amplified by polymerase chain reaction at 7 microsatellite targets (BAT25, BAT26, D17S250, D2S123, D5S346, transforming growth factor receptor II, and BAX). RESULTS: Overall 5-year survival rate was 72%. p53 protein nuclear staining was detected in 39 patients (44%), and MSI was detected in 21 patients (24%). MSI correlated with proximal location (P <.001) and mucinous content (P <.001). In a multivariate analysis, p53 protein expression carried a significant risk of death (relative risk = 4.0, 95% CI = 1.6 to 10.1, P =.004). By comparison, MSI was not a statistically significant prognostic factor for survival in this group (relative risk = 2.2, 95% CI = 0.6 to 7.3, P =.21). CONCLUSIONS: p53 protein overexpression provides better prognostic discrimination than MSI in predicting survival of patients with T3N0 colorectal cancer. Although MSI is associated with specific clinicopathologic parameters, it did not predict overall survival in this group. Assessment of p53 protein expression by immunocytochemistry provides a simple means to identify a subset of T3N0 patients with a 4-times increased risk for death.
Resumo:
BACKGROUND: Synthesis of the Staphylococcus aureus peptidoglycan pentaglycine interpeptide bridge is catalyzed by the nonribosomal peptidyl transferases FemX, FemA and FemB. Inactivation of the femAB operon reduces the interpeptide to a monoglycine, leading to a poorly crosslinked peptidoglycan. femAB mutants show a reduced growth rate and are hypersusceptible to virtually all antibiotics, including methicillin, making FemAB a potential target to restore beta-lactam susceptibility in methicillin-resistant S. aureus (MRSA). Cis-complementation with wild type femAB only restores synthesis of the pentaglycine interpeptide and methicillin resistance, but the growth rate remains low. This study characterizes the adaptations that ensured survival of the cells after femAB inactivation. RESULTS: In addition to slow growth, the cis-complemented femAB mutant showed temperature sensitivity and a higher methicillin resistance than the wild type. Transcriptional profiling paired with reporter metabolite analysis revealed multiple changes in the global transcriptome. A number of transporters for sugars, glycerol, and glycine betaine, some of which could serve as osmoprotectants, were upregulated. Striking differences were found in the transcription of several genes involved in nitrogen metabolism and the arginine-deiminase pathway, an alternative for ATP production. In addition, microarray data indicated enhanced expression of virulence factors that correlated with premature expression of the global regulators sae, sarA, and agr. CONCLUSION: Survival under conditions preventing normal cell wall formation triggered complex adaptations that incurred a fitness cost, showing the remarkable flexibility of S. aureus to circumvent cell wall damage. Potential FemAB inhibitors would have to be used in combination with other antibiotics to prevent selection of resistant survivors.
Resumo:
L-2-Hydroxyglutaric aciduria (L2HGA) is a rare, neurometabolic disorder with an autosomal recessive mode of inheritance. Affected individuals only have neurological manifestations, including psychomotor retardation, cerebellar ataxia, and more variably macrocephaly, or epilepsy. The diagnosis of L2HGA can be made based on magnetic resonance imaging (MRI), biochemical analysis, and mutational analysis of L2HGDH. About 200 patients with elevated concentrations of 2-hydroxyglutarate (2HG) in the urine were referred for chiral determination of 2HG and L2HGDH mutational analysis. All patients with increased L2HG (n=106; 83 families) were included. Clinical information on 61 patients was obtained via questionnaires. In 82 families the mutations were detected by direct sequence analysis and/or multiplex ligation dependent probe amplification (MLPA), including one case where MLPA was essential to detect the second allele. In another case RT-PCR followed by deep intronic sequencing was needed to detect the mutation. Thirty-five novel mutations as well as 35 reported mutations and 14 nondisease-related variants are reviewed and included in a novel Leiden Open source Variation Database (LOVD) for L2HGDH variants (http://www.LOVD.nl/L2HGDH). Every user can access the database and submit variants/patients. Furthermore, we report on the phenotype, including neurological manifestations and urinary levels of L2HG, and we evaluate the phenotype-genotype relationship.
Resumo:
BACKGROUND: PCR has the potential to detect and precisely quantify specific DNA sequences, but it is not yet often used as a fully quantitative method. A number of data collection and processing strategies have been described for the implementation of quantitative PCR. However, they can be experimentally cumbersome, their relative performances have not been evaluated systematically, and they often remain poorly validated statistically and/or experimentally. In this study, we evaluated the performance of known methods, and compared them with newly developed data processing strategies in terms of resolution, precision and robustness. RESULTS: Our results indicate that simple methods that do not rely on the estimation of the efficiency of the PCR amplification may provide reproducible and sensitive data, but that they do not quantify DNA with precision. Other evaluated methods based on sigmoidal or exponential curve fitting were generally of both poor resolution and precision. A statistical analysis of the parameters that influence efficiency indicated that it depends mostly on the selected amplicon and to a lesser extent on the particular biological sample analyzed. Thus, we devised various strategies based on individual or averaged efficiency values, which were used to assess the regulated expression of several genes in response to a growth factor. CONCLUSION: Overall, qPCR data analysis methods differ significantly in their performance, and this analysis identifies methods that provide DNA quantification estimates of high precision, robustness and reliability. These methods allow reliable estimations of relative expression ratio of two-fold or higher, and our analysis provides an estimation of the number of biological samples that have to be analyzed to achieve a given precision.
Resumo:
Using one male-inherited, one female-inherited and eight biparentally inherited markers, we investigate the population genetic structure of the Valais shrew (Sorex antinorii) in the Swiss Alps. Bayesian analysis on autosomal microsatellites suggests a clear genetic differentiation between two groups of populations. This geographically based structure is consistent with two separate postglacial recolonization routes of the species into Switzerland from Italian refugia after the last Pleistocene glaciations. Sex-specific markers also confirm genetic structuring among western and eastern areas, since very few haplotypes for either Y chromosome or mtDNA genome are shared between the two regions. Overall, these results suggest that two already well-differentiated genetic lineages colonized the Swiss Alps and came into secondary contact in the Rhône Valley. Low level of admixture between the two lineages is likely explained by the mountainous landscape structure of lateral valleys orthogonal to the main Rhône valley.
Resumo:
Proteoglycans (PGs) are a major component of the extracellular matrix in many tissues and function as structural and regulatory molecules. PGs are composed of core proteins and glycosaminoglycan (GAG) side chains. The biosynthesis of GAGs starts with the linker region that consists of four sugar residues and is followed by repeating disaccharide units. By exome sequencing, we found that B3GALT6 encoding an enzyme involved in the biosynthesis of the GAG linker region is responsible for a severe skeletal dysplasia, spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1). B3GALT6 loss-of-function mutations were found in individuals with SEMD-JL1 from seven families. In a subsequent candidate gene study based on the phenotypic similarity, we found that B3GALT6 is also responsible for a connective tissue disease, Ehlers-Danlos syndrome (progeroid form). Recessive loss-of-function mutations in B3GALT6 result in a spectrum of disorders affecting a broad range of skeletal and connective tissues characterized by lax skin, muscle hypotonia, joint dislocation, and spinal deformity. The pleiotropic phenotypes of the disorders indicate that B3GALT6 plays a critical role in a wide range of biological processes in various tissues, including skin, bone, cartilage, tendon, and ligament.
Resumo:
Estradiol and progesterone are crucial for the acquisition of receptivity and the change in transcriptional activity of target genes in the implantation window. The aim of this study was to differentiate the regulation of genes in the endometrium of patients with recurrent implantation failure (IF) versus those who became pregnant after in vitro fertilization (IVF) treatment. Moreover, the effect of embryo-derived factors on endometrial transcriptional activity was studied. Nine women with known IVF outcome (IF, M, miscarriage, OP, ongoing pregnancy) and undergoing hysteroscopy with endometrial biopsy were enrolled. Biopsies were taken during the midluteal phase. After culture in the presence of embryo-conditioned IVF media, total RNA was extracted and submitted to reverse transcription, target cDNA synthesis, biotin labelling, fragmentation and hybridization using the Affymetrix Human Genome U133A 2.0 Chip. Differential expression of selected genes was re-analysed by quantitative PCR, in which the results were calculated as threshold cycle differences between the groups and normalized to Glyceraldehyde phosphate dehydrogenase and beta-actin. Differences were seen for several genes from endometrial tissue between the IF and the pregnancy groups, and when comparing OP with M, 1875 up- and 1807 down-regulated genes were returned. Real-time PCR analysis confirmed up-regulation for somatostatin, PLAP-2, mucin 4 and CD163, and down-regulation of glycodelin, IL-24, CD69, leukaemia inhibitory factor and prolactin receptor between Op and M. When the different embryo-conditioned media were compared, no significant differential regulation could be demonstrated. Although microarray profiling may currently not be sensitive enough for studying the effects of embryo-derived factors on the endometrium, the observed differences in gene expression between M and OP suggest that it will become an interesting tool for the identification of fertility-relevant markers produced by the endometrium.
Resumo:
PURPOSE OF REVIEW: The kidney plays an essential role in maintaining sodium and water balance, thereby controlling the volume and osmolarity of the extracellular body fluids, the blood volume and the blood pressure. The final adjustment of sodium and water reabsorption in the kidney takes place in cells of the distal part of the nephron in which a set of apical and basolateral transporters participate in vectorial sodium and water transport from the tubular lumen to the interstitium and, finally, to the general circulation. According to a current model, the activity and/or cell-surface expression of these transporters is/are under the control of a gene network composed of the hormonally regulated, as well as constitutively expressed, genes. It is proposed that this gene network may include new candidate genes for salt- and water-losing syndromes and for salt-sensitive hypertension. A new generation of functional genomics techniques have recently been applied to the characterization of this gene network. The purpose of this review is to summarize these studies and to discuss the potential of the different techniques for characterization of the renal transcriptome. RECENT FINDINGS: Recently, DNA microarrays and serial analysis of gene expression have been applied to characterize the kidney transcriptome in different in-vivo and in-vitro models. In these studies, a set of new interesting genes potentially involved in the regulation of sodium and water reabsorption by the kidney have been identified and are currently under detailed investigation. SUMMARY: Characterization of the kidney transcriptome is greatly expanding our knowledge of the gene networks involved in multiple kidney functions, including the maintenance of sodium and water homeostasis.