972 resultados para Propositional calculus.
Resumo:
This research aims to elucidate some of the historical aspects of the idea of infinity during the creation of calculus and set theory. It also seeks to raise discussions about the nature of infinity: current infinite and potential infinite. For this, we conducted a survey with a qualitative approach in the form of exploratory study. This study was based on books of Mathematics' History and other scientific works such as articles, theses and dissertations on the subject. This work will bring the view of some philosophers and thinkers about the infinite, such as: Pythagoras, Plato, Aristotle, Galilei, Augustine, Cantor. The research will be presented according to chronological order. The objective of the research is to understand the infinite from ancient Greece with the paradoxes of Zeno, during the time which the conflict between the conceptions atomistic and continuity were dominant, and in this context that Zeno launches its paradoxes which contradict much a concept as another, until the theory Cantor set, bringing some paradoxes related to this theory, namely paradox of Russell and Hilbert's paradox. The study also presents these paradoxes mentioned under the mathematical point of view and the light of calculus and set theory
Resumo:
In this action research study of my calculus classroom consisting of only 12th grade students, I investigated activities that would affect a student’s understanding of mathematical language. The goal in examining these activities in a systematic way was to see if a student’s deeper understanding of math terms and symbols resulted in a better understanding of the mathematical concepts being taught. I discovered that some students will rise to the challenge of understanding mathematics more deeply, and some will not. In the process of expecting more from students, the frustration level of both the students and the teacher increased. As a result of this research, I plan to see what other activities will enhance the understanding of mathematical language.
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
This study offers an analysis of classification of the main issues of logic and logical thinking found in competitive tendering and math tests, according to their concepts and characteristics, whether involving mathematics, or not. Moreover, a research on the evolutionary historic processes of logic according to three major crises of the foundations of mathematics was conducted. This research helped to define Logic as a science that is quite distinctive from Mathematics. In order to relate the logical and the mathematical thinking, three types of knowledge, according to Piaget, were presented, with the logical-mathematical one being among them. The study also includes an insight on the basic concepts of propositional and predicative logic, which aids in the classification of issues of logical thinking, formal logic or related to algebraic, and geometric or arithmetic knowledge, according to the Venn diagrams. Furthermore, the key problems - that are most frequently found in tests are resolved and classified, as it was previously described. As a result, the classification in question was created and exemplified with eighteen logic problems, duly solved and explained
Resumo:
This research aims to elucidate some of the historical aspects of the idea of infinity during the creation of calculus and set theory. It also seeks to raise discussions about the nature of infinity: current infinite and potential infinite. For this, we conducted a survey with a qualitative approach in the form of exploratory study. This study was based on books of Mathematics' History and other scientific works such as articles, theses and dissertations on the subject. This work will bring the view of some philosophers and thinkers about the infinite, such as: Pythagoras, Plato, Aristotle, Galilei, Augustine, Cantor. The research will be presented according to chronological order. The objective of the research is to understand the infinite from ancient Greece with the paradoxes of Zeno, during the time which the conflict between the conceptions atomistic and continuity were dominant, and in this context that Zeno launches its paradoxes which contradict much a concept as another, until the theory Cantor set, bringing some paradoxes related to this theory, namely paradox of Russell and Hilbert's paradox. The study also presents these paradoxes mentioned under the mathematical point of view and the light of calculus and set theory
Resumo:
Reasoning and change over inconsistent knowledge bases (KBs) is of utmost relevance in areas like medicine and law. Argumentation may bring the possibility to cope with both problems. Firstly, by constructing an argumentation framework (AF) from the inconsistent KB, we can decide whether to accept or reject a certain claim through the interplay among arguments and counterarguments. Secondly, by handling dynamics of arguments of the AF, we might deal with the dynamics of knowledge of the underlying inconsistent KB. Dynamics of arguments has recently attracted attention and although some approaches have been proposed, a full axiomatization within the theory of belief revision was still missing. A revision arises when we want the argumentation semantics to accept an argument. Argument Theory Change (ATC) encloses the revision operators that modify the AF by analyzing dialectical trees-arguments as nodes and attacks as edges-as the adopted argumentation semantics. In this article, we present a simple approach to ATC based on propositional KBs. This allows to manage change of inconsistent KBs by relying upon classical belief revision, although contrary to it, consistency restoration of the KB is avoided. Subsequently, a set of rationality postulates adapted to argumentation is given, and finally, the proposed model of change is related to the postulates through the corresponding representation theorem. Though we focus on propositional logic, the results can be easily extended to more expressive formalisms such as first-order logic and description logics, to handle evolution of ontologies.
Resumo:
Sturge-Weber syndrome is a nonhereditary congenital condition characterized by leptomeningeal and facial skin angiomatous malformation following the trigeminal nerve path. The intraoral angiomatosis are presented in 40% of cases and results in an important periodontal alteration, increasing the risk of bleeding during dental procedures. A 43-year-old male patient presented with port wine stain on the right side of the face, the entire hard and soft palates, the alveolar ridge, and buccal mucosa, and had an excessive accumulation of calcified masses in both supragingival and subgingival sites, with swelling and generalized inflammation throughout the gingiva and alveolar mucosa. He reported not having sanitized the area for years for fear of bleeding. Periodontal management, to remove calculus and to control gingivitis initiated in the supragingival region and gradually reaching the subgingival region to control oral microbiota, was performed with mild bleeding. The redness of the staining greatly diminished with time and the extreme halitosis of the patient also improved sharply leading to a dramatic improvement in quality of life. Ambulatory care is a feasible alternative for periodontal management that within safety limits for bleeding risks reduces the operational cost.
Resumo:
This work proposes the development and study of a novel technique lot the generation of fractal descriptors used in texture analysis. The novel descriptors are obtained from a multiscale transform applied to the Fourier technique of fractal dimension calculus. The power spectrum of the Fourier transform of the image is plotted against the frequency in a log-log scale and a multiscale transform is applied to this curve. The obtained values are taken as the fractal descriptors of the image. The validation of the proposal is performed by the use of the descriptors for the classification of a dataset of texture images whose real classes are previously known. The classification precision is compared to other fractal descriptors known in the literature. The results confirm the efficiency of the proposed method. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The present work shows a novel fractal dimension method for shape analysis. The proposed technique extracts descriptors from a shape by applying a multi-scale approach to the calculus of the fractal dimension. The fractal dimension is estimated by applying the curvature scale-space technique to the original shape. By applying a multi-scale transform to the calculus, we obtain a set of descriptors which is capable of describing the shape under investigation with high precision. We validate the computed descriptors in a classification process. The results demonstrate that the novel technique provides highly reliable descriptors, confirming the efficiency of the proposed method. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757226]
Resumo:
Effects of roads on wildlife and its habitat have been measured using metrics, such as the nearest road distance, road density, and effective mesh size. In this work we introduce two new indices: (1) Integral Road Effect (IRE), which measured the sum effects of points in a road at a fixed point in the forest; and (2) Average Value of the Infinitesimal Road Effect (AVIRE), which measured the average of the effects of roads at this point. IRE is formally defined as the line integral of a special function (the infinitesimal road effect) along the curves that model the roads, whereas AVIRE is the quotient of IRE by the length of the roads. Combining tools of ArcGIS software with a numerical algorithm, we calculated these and other road and habitat cover indices in a sample of points in a human-modified landscape in the Brazilian Atlantic Forest, where data on the abundance of two groups of small mammals (forest specialists and habitat generalists) were collected in the field. We then compared through the Akaike Information Criterion (AIC) a set of candidate regression models to explain the variation in small mammal abundance, including models with our two new road indices (AVIRE and IRE) or models with other road effect indices (nearest road distance, mesh size, and road density), and reference models (containing only habitat indices, or only the intercept without the effect of any variable). Compared to other road effect indices, AVIRE showed the best performance to explain abundance of forest specialist species, whereas the nearest road distance obtained the best performance to generalist species. AVIRE and habitat together were included in the best model for both small mammal groups, that is, higher abundance of specialist and generalist small mammals occurred where there is lower average road effect (less AVIRE) and more habitat. Moreover, AVIRE was not significantly correlated with habitat cover of specialists and generalists differing from the other road effect indices, except mesh size, which allows for separating the effect of roads from the effect of habitat on small mammal communities. We suggest that the proposed indices and GIS procedures could also be useful to describe other spatial ecological phenomena, such as edge effect in habitat fragments. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.
Resumo:
The aim of this paper is to find an odd homoclinic orbit for a class of reversible Hamiltonian systems. The proof is variational and it employs a version of the concentration compactness principle of P. L. Lions in a lemma due to Struwe.