980 resultados para Produtividade agrícola - Modelos matemáticos
Resumo:
We investigate by means of Monte Carlo simulation and finite-size scaling analysis the critical properties of the three dimensional O (5) non-linear σ model and of the antiferromagnetic RP^(2) model, both of them regularized on a lattice. High accuracy estimates are obtained for the critical exponents, universal dimensionless quantities and critical couplings. It is concluded that both models belong to the same universality class, provided that rather non-standard identifications are made for the momentum-space propagator of the RP^(2) model. We have also investigated the phase diagram of the RP^(2) model extended by a second-neighbor interaction. A rich phase diagram is found, where most of the phase transitions are of the first order.
Resumo:
The phase diagram of the simplest approximation to double-exchange systems, the bosonic double-exchange model with antiferromagnetic (AFM) superexchange coupling, is fully worked out by means of Monte Carlo simulations, large-N expansions, and variational mean-field calculations. We find a rich phase diagram, with no first-order phase transitions. The most surprising finding is the existence of a segmentlike ordered phase at low temperature for intermediate AFM coupling which cannot be detected in neutron-scattering experiments. This is signaled by a maximum (a cusp) in the specific heat. Below the phase transition, only short-range ordering would be found in neutron scattering. Researchers looking for a quantum critical point in manganites should be wary of this possibility. Finite-size scaling estimates of critical exponents are presented, although large scaling corrections are present in the reachable lattice sizes.
Resumo:
The phase diagram of the double perovskites of the type Sr_(2-x)La_(x)FeMoO_(6) is analyzed, with and without disorder due to antisites. In addition to an homogeneous half metallic ferrimagnetic phase in the absence of doping and disorder, we find antiferromagnetic phases at large dopings, and other ferrimagnetic phases with lower saturation magnetization, in the presence of disorder.
Resumo:
We study the fluctuation-dissipation relations for a three dimensional Ising spin glass in a magnetic field both in the high temperature phase as well as in the low temperature one. In the region of times simulated we have found that our results support a picture of the low temperature phase with broken replica symmetry, but a droplet behavior cannot be completely excluded.
Resumo:
It is shown that a bosonic formulation of the double-exchange model, one of the classical models for magnetism, generates dynamically a gauge-invariant phase in a finite region of the phase diagram. We use analytical methods, Monte Carlo simulations and finite-size scaling analysis. We study the transition line between that region and the paramagnetic phase. The numerical results show that this transition line belongs to the universality class of the antiferromagnetic RP^(2) model. The fact that one can define a universality class for the antiferromagnetic RP^(2) model, different from the one of the O(N) models, is puzzling and somehow contradicts naive expectations about universality.
Resumo:
Considering the disorder caused in manganites by the substitution Mn→Fe or Ga, we accomplish a systematic study of doped manganites begun in previous papers. To this end, a disordered model is formulated and solved using the variational mean-field technique. The subtle interplay between double exchange, superexchange, and disorder causes similar effects on the dependence of T_(C) on the percentage of Mn substitution in the cases considered. Yet, in La_(2/3)Ca_(1/3)Mn_(1-y)Ga_(y)O_(3) our results suggest a quantum critical point (QCP) for y ≈ 0.1–0.2, associated to the localization of the electronic states of the conduction band. In the case of La_(x)Ca_(x)Mn_(1-y)Fe_(y)O_(3) (with x = 1/3,3/8) no such QCP is expected.
Resumo:
We study the phase diagram of the double exchange model, with antiferromagnetic interactions, in a cubic lattice both at zero and finite temperature. There is a rich variety of magnetic phases, combined with regions where phase separation takes place. We identify phases, intrinsic to the cubic lattice, which are stable for realistic values of the interactions and dopings. Some of these phases break chiral symmetry, leading to unusual features.
Resumo:
A la industria alimentaria se le exigen productos seguros, nutritivos, apetecibles y de uso cómodo y rápido. Aunar todos esos calificativos en un solo alimento es ardua tarea. Valgan dos ejemplos. Un tratamiento conservante intenso, de buenas perspectivas sanitarias, suele conllevar una pérdida de valor nutritivo y unas características sensoriales poco atractivas. El manejo de los alimentos para transformarlos en productos listos pare el consumo implica la asunción de ciertos riesgos microbiológicos, mayores que los asumidos en productos sin manipulación. ¿Cómo responder ante el incremento de riesgos y peligros que se ciernen sobre los “nuevos alimentos”? Una alternativa que ha ganado correligionarios es la microbiología predictiva. Es una herramienta útil, a disposición de cualquier entidad interesada en los alimentos, que predice, mediante modelos matemáticos, el comportamiento microbiano bajo ciertas condiciones. La mayoría de los modelos disponibles predicen valores únicos (a cada valor de la variable independiente le corresponde un único valor de la dependiente); han demostrado su eficacia durante décadas a base de tratamientos sobredimensionados para salvaguardar la calidad microbiológica de los alimentos y predicen una media, sin considerar la variabilidad. Considérese un valor de reducción decimal, D, de 1 minuto. Si el producto contiene 103 ufc/g, un envase de 1 Kg que haya pasado por un tratamiento 6D, contendrá 1 célula viable. Hasta aquí la predicción de un modelo clásico. Ahora piénsese en una producción industrial, miles de envases de 1 Kg/h. ¿Quién puede creerse que en todos ellos habrá 1 microorganismo superviviente? ¿No es más creíble que en unos no quedará ningún viable, en muchos 1, en otros 2, 3 y quizás en los menos 5 ó 6? Los modelos que no consideran la variabilidad microbiana predicen con precisión la tasa de crecimiento pero han fracasado en la predicción de la fase de latencia...
Resumo:
Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Given the discrepancy over the optimum levels of employment for Colombia, this research targets both, the national and urban, Non-Accelerating Inflation Rate of Unemployment (NAIRU) for the Colombian markets -- In doing so, there is a strong pertinence in estimating the constant NAIRU through raw and minimally altered data and providing the reader with a complete brief of the theory in which the model is founded -- The introduction of supply shocks is considered to attain improved estimations and a more reliable assessment of the NAIRU to those that have previously been attempted -- The backbone of the analysis is conducted through the relationship established by the Phillips curve from 2001 until 2015
Resumo:
Aunque existen numerosos trabajos que identifican sus principales características y modo de funcionamiento, el estudio de las organizaciones virtuales adolece de una carencia de modelos matemáticos que reflejen su comportamiento de un modo cuantitativo. En este sentido, a lo largo del presente trabajo se tratará de poner de manifiesto las similitudes existentes entre el funcionamiento de las organizaciones virtuales y el de las redes neuronales (SOM, SelfOrganizing Maps). El objetivo es sentar las bases para proponer este tipo de técnica estadística como herramienta para la formulación de modelos sobre organizaciones virtuales. Se plantearán una serie de argumentos de plausibilidad, dejando a investigaciones posteriores la verificación rigurosa de esta propuesta.
Resumo:
La dinámica demográfica ha sido modelada con ecuaciones diferenciales desde que Malthus comenzó sus estudios hace más de doscientos años atrás. Los modelos convencionales siempre tratan relaciones entre especies como estáticas, denotando sólo su dependencia durante un período fijo del tiempo, aunque sea conocido que las relaciones entre especies pueden cambiar con el tiempo. Aquí proponemos un modelo para la dinámica demográfica que incorpora la evolución con el tiempo de las interacciones entre especies. Este modelo incluye una amplia gama de interacciones, de depredador-presa a las relaciones mutualistas, ya sea obligada o facultativa. El mecanismo que describimos permite la transición de una clase de relación entre especies a algún otro, según algunos parámetros externos fijados por el contexto. Estas transiciones podrían evitar la extinción de una de las especies, si esto termina por depender demasiado del ambiente o su relación con las otras especies.