986 resultados para Probability estimation
Resumo:
We have developed a new Bayesian approach to retrieve oceanic rain rate from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), with an emphasis on typhoon cases in the West Pacific. Retrieved rain rates are validated with measurements of rain gauges located on Japanese islands. To demonstrate improvement, retrievals are also compared with those from the TRMM/Precipitation Radar (PR), the Goddard Profiling Algorithm (GPROF), and a multi-channel linear regression statistical method (MLRS). We have found that qualitatively, all methods retrieved similar horizontal distributions in terms of locations of eyes and rain bands of typhoons. Quantitatively, our new Bayesian retrievals have the best linearity and the smallest root mean square (RMS) error against rain gauge data for 16 typhoon overpasses in 2004. The correlation coefficient and RMS of our retrievals are 0.95 and ~2 mm hr-1, respectively. In particular, at heavy rain rates, our Bayesian retrievals outperform those retrieved from GPROF and MLRS. Overall, the new Bayesian approach accurately retrieves surface rain rate for typhoon cases. Accurate rain rate estimates from this method can be assimilated in models to improve forecast and prevent potential damages in Taiwan during typhoon seasons.
Resumo:
The potential for spatial dependence in models of voter turnout, although plausible from a theoretical perspective, has not been adequately addressed in the literature. Using recent advances in Bayesian computation, we formulate and estimate the previously unutilized spatial Durbin error model and apply this model to the question of whether spillovers and unobserved spatial dependence in voter turnout matters from an empirical perspective. Formal Bayesian model comparison techniques are employed to compare the normal linear model, the spatially lagged X model (SLX), the spatial Durbin model, and the spatial Durbin error model. The results overwhelmingly support the spatial Durbin error model as the appropriate empirical model.
Resumo:
This study analyzes organic adoption decisions using a rich set of time-to-organic durations collected from avocado small-holders in Michoacán Mexico. We derive robust, intrasample predictions about the profiles of entry and exit within the conventional-versus-organic complex and we explore the sensitivity of these predictions to choice of functional form. The dynamic nature of the sample allows us to make retrospective predictions and we establish, precisely, the profile of organic entry had the respondents been availed optimal amounts of adoption-restraining resources. A fundamental problem in the dynamic adoption literature, hitherto unrecognized, is discussed and consequent extensions are suggested.
Resumo:
In this paper a support vector machine (SVM) approach for characterizing the feasible parameter set (FPS) in non-linear set-membership estimation problems is presented. It iteratively solves a regression problem from which an approximation of the boundary of the FPS can be determined. To guarantee convergence to the boundary the procedure includes a no-derivative line search and for an appropriate coverage of points on the FPS boundary it is suggested to start with a sequential box pavement procedure. The SVM approach is illustrated on a simple sine and exponential model with two parameters and an agro-forestry simulation model.
Resumo:
The estimation of the long-term wind resource at a prospective site based on a relatively short on-site measurement campaign is an indispensable task in the development of a commercial wind farm. The typical industry approach is based on the measure-correlate-predict �MCP� method where a relational model between the site wind velocity data and the data obtained from a suitable reference site is built from concurrent records. In a subsequent step, a long-term prediction for the prospective site is obtained from a combination of the relational model and the historic reference data. In the present paper, a systematic study is presented where three new MCP models, together with two published reference models �a simple linear regression and the variance ratio method�, have been evaluated based on concurrent synthetic wind speed time series for two sites, simulating the prospective and the reference site. The synthetic method has the advantage of generating time series with the desired statistical properties, including Weibull scale and shape factors, required to evaluate the five methods under all plausible conditions. In this work, first a systematic discussion of the statistical fundamentals behind MCP methods is provided and three new models, one based on a nonlinear regression and two �termed kernel methods� derived from the use of conditional probability density functions, are proposed. All models are evaluated by using five metrics under a wide range of values of the correlation coefficient, the Weibull scale, and the Weibull shape factor. Only one of all models, a kernel method based on bivariate Weibull probability functions, is capable of accurately predicting all performance metrics studied.
Resumo:
Statistical methods of inference typically require the likelihood function to be computable in a reasonable amount of time. The class of “likelihood-free” methods termed Approximate Bayesian Computation (ABC) is able to eliminate this requirement, replacing the evaluation of the likelihood with simulation from it. Likelihood-free methods have gained in efficiency and popularity in the past few years, following their integration with Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) in order to better explore the parameter space. They have been applied primarily to estimating the parameters of a given model, but can also be used to compare models. Here we present novel likelihood-free approaches to model comparison, based upon the independent estimation of the evidence of each model under study. Key advantages of these approaches over previous techniques are that they allow the exploitation of MCMC or SMC algorithms for exploring the parameter space, and that they do not require a sampler able to mix between models. We validate the proposed methods using a simple exponential family problem before providing a realistic problem from human population genetics: the comparison of different demographic models based upon genetic data from the Y chromosome.
Resumo:
Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian computation (Pritchard et al., 1999). Applications to estimating the parameters of Ising models and exponential random graphs from noisy data are presented. Each algorithm used in the paper targets an approximation to the true posterior due to the use of MCMC to simulate from the latent graphical model, in lieu of being able to do this exactly in general. The supplementary appendix also describes the nature of the resulting approximation.
Resumo:
Despite the fact that mites were used at the dawn of forensic entomology to elucidate the postmortem interval, their use in current cases remains quite low for procedural reasons such as inadequate taxonomic knowledge. A special interest is focused on the phoretic stages of some mite species, because the phoront-host specificity allows us to deduce in many occasions the presence of the carrier (usually Diptera or Coleoptera) although it has not been seen in the sampling performed in situ or in the autopsy room. In this article, we describe two cases where Poecilochirus austroasiaticus Vitzthum (Acari: Parasitidae) was sampled in the autopsy room. In the first case, we could sample the host, Thanatophilus ruficornis (Küster) (Coleoptera: Silphidae), which was still carrying phoretic stages of the mite on the body. That attachment allowed, by observing starvation/feeding periods as a function of the digestive tract filling, the establishment of chronological cycles of phoretic behavior, showing maximum peaks of phoronts during arrival and departure from the corpse and the lowest values in the phase of host feeding. From the sarcosaprophagous fauna, we were able to determine in this case a minimum postmortem interval of 10 days. In the second case, we found no Silphidae at the place where the corpse was found or at the autopsy, but a postmortem interval of 13 days could be established by the high specificity of this interspecific relationship and the departure from the corpse of this family of Coleoptera.
Resumo:
References (20)Cited By (1)Export CitationAboutAbstract Proper scoring rules provide a useful means to evaluate probabilistic forecasts. Independent from scoring rules, it has been argued that reliability and resolution are desirable forecast attributes. The mathematical expectation value of the score allows for a decomposition into reliability and resolution related terms, demonstrating a relationship between scoring rules and reliability/resolution. A similar decomposition holds for the empirical (i.e. sample average) score over an archive of forecast–observation pairs. This empirical decomposition though provides a too optimistic estimate of the potential score (i.e. the optimum score which could be obtained through recalibration), showing that a forecast assessment based solely on the empirical resolution and reliability terms will be misleading. The differences between the theoretical and empirical decomposition are investigated, and specific recommendations are given how to obtain better estimators of reliability and resolution in the case of the Brier and Ignorance scoring rule.
Resumo:
The continuous ranked probability score (CRPS) is a frequently used scoring rule. In contrast with many other scoring rules, the CRPS evaluates cumulative distribution functions. An ensemble of forecasts can easily be converted into a piecewise constant cumulative distribution function with steps at the ensemble members. This renders the CRPS a convenient scoring rule for the evaluation of ‘raw’ ensembles, obviating the need for sophisticated ensemble model output statistics or dressing methods prior to evaluation. In this article, a relation between the CRPS score and the quantile score is established. The evaluation of ‘raw’ ensembles using the CRPS is discussed in this light. It is shown that latent in this evaluation is an interpretation of the ensemble as quantiles but with non-uniform levels. This needs to be taken into account if the ensemble is evaluated further, for example with rank histograms.
Resumo:
A method is suggested for the calculation of the friction velocity for stable turbulent boundary-layer flow over hills. The method is tested using a continuous upstream mean velocity profile compatible with the propagation of gravity waves, and is incorporated into the linear model of Hunt, Leibovich and Richards with the modification proposed by Hunt, Richards and Brighton to include the effects of stability, and the reformulated solution of Weng for the near-surface region. Those theoretical results are compared with results from simulations using a non-hydrostatic microscale-mesoscale two-dimensional numerical model, and with field observations for different values of stability. These comparisons show a considerable improvement in the behaviour of the theoretical model when the friction velocity is calculated using the method proposed here, leading to a consistent variation of the boundary-layer structure with stability, and better agreement with observational and numerical data.
Resumo:
We introduce an algorithm (called REDFITmc2) for spectrum estimation in the presence of timescale errors. It is based on the Lomb-Scargle periodogram for unevenly spaced time series, in combination with the Welch's Overlapped Segment Averaging procedure, bootstrap bias correction and persistence estimation. The timescale errors are modelled parametrically and included in the simulations for determining (1) the upper levels of the spectrum of the red-noise AR(1) alternative and (2) the uncertainty of the frequency of a spectral peak. Application of REDFITmc2 to ice core and stalagmite records of palaeoclimate allowed a more realistic evaluation of spectral peaks than when ignoring this source of uncertainty. The results support qualitatively the intuition that stronger effects on the spectrum estimate (decreased detectability and increased frequency uncertainty) occur for higher frequencies. The surplus information brought by algorithm REDFITmc2 is that those effects are quantified. Regarding timescale construction, not only the fixpoints, dating errors and the functional form of the age-depth model play a role. Also the joint distribution of all time points (serial correlation, stratigraphic order) determines spectrum estimation.
Resumo:
In this paper I analyze the general equilibrium in a random Walrasian economy. Dependence among agents is introduced in the form of dependency neighborhoods. Under the uncertainty, an agent may fail to survive due to a meager endowment in a particular state (direct effect), as well as due to unfavorable equilibrium price system at which the value of the endowment falls short of the minimum needed for survival (indirect terms-of-trade effect). To illustrate the main result I compute the stochastic limit of equilibrium price and probability of survival of an agent in a large Cobb-Douglas economy.
Resumo:
We present a model of market participation in which the presence of non-negligible fixed costs leads to random censoring of the traditional double-hurdle model. Fixed costs arise when household resources must be devoted a priori to the decision to participate in the market. These costs, usually of time, are manifested in non-negligible minimum-efficient supplies and supply correspondence that requires modification of the traditional Tobit regression. The costs also complicate econometric estimation of household behavior. These complications are overcome by application of the Gibbs sampler. The algorithm thus derived provides robust estimates of the fixed-costs, double-hurdle model. The model and procedures are demonstrated in an application to milk market participation in the Ethiopian highlands.