964 resultados para Pressure-indicating sensor film


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt sensitivity of blood pressure is associated with an elevated risk of developing hypertension (HTN) and is an independent risk factor for cardiovascular disease. The prevalence of HTN increases after menopause. The aim of this study was to investigate prospectively whether the loss of ovarian hormones increases the occurrence of salt sensitivity among healthy premenopausal women. We enrolled 40 normotensive, nondiabetic women (age 47.2+/-3.5), undergoing hysterectomy-oophorectomy for nonneoplastic processes and not on hormone replacement, to determine the effect of changes in sodium intake on blood pressure the day before and subsequently 4 months after surgical menopause. Salt loading was achieved using a 2-L normal saline infusion and salt depletion produced by 40 mg of intravenous furosemide. A decrease >10 mm Hg in systolic blood pressure between salt loading and salt depletion was used to define salt sensitivity. Before and after menopause, salt-sensitive women exhibited higher waist/hip and waist/thigh ratios (P<0.01). Although all of the women remained normotensive, the prevalence of salt sensitivity was significantly higher after surgical menopause (21 women; 52.5%) than before (9 women; 22.5%; P=0.01), because 12 (38.7%) salt-resistant women developed salt sensitivity after menopause. In summary, we demonstrated that the prevalence of salt sensitivity doubled as early as 4 months after surgical menopause, without an associated increase in blood pressure. Epidemiological studies indicate that development of HTN may not occur until 5 to 10 years after menopause. The loss of ovarian hormones may unmask a population of women prone to salt sensitivity who, with aging, would be at higher risk for the subsequent development of HTN and cardiovascular disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hemeoxygenase-2 (HO-2) is an antioxidant enzyme that can modulate recombinant maxi-K(+) channels and has been proposed to be the acute O(2) sensor in the carotid body (CB). We have tested the physiological contribution of this enzyme to O(2) sensing using HO-2 null mice. HO-2 deficiency leads to a CB phenotype characterized by organ growth and alteration in the expression of stress-dependent genes, including the maxi-K(+) channel alpha-subunit. However, sensitivity to hypoxia of CB is remarkably similar in HO-2 null animals and their control littermates. Moreover, the response to hypoxia in mouse and rat CB cells was maintained after blockade of maxi-K(+) channels with iberiotoxin. Hypoxia responsiveness of the adrenal medulla (AM) (another acutely responding O(2)-sensitive organ) was also unaltered by HO-2 deficiency. Our data suggest that redox disregulation resulting from HO-2 deficiency affects maxi-K(+) channel gene expression but it does not alter the intrinsic O(2) sensitivity of CB or AM cells. Therefore, HO-2 is not a universally used acute O(2) sensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Higher and lower cerebral perfusion pressure (CPP) thresholds have been proposed to improve brain tissue oxygen pressure (PtiO2) and outcome. We study the distribution of hypoxic PtiO2 samples at different CPP thresholds, using prospective multimodality monitoring in patients with severe traumatic brain injury. METHODS This is a prospective observational study of 22 severely head injured patients admitted to a neurosurgical critical care unit from whom multimodality data was collected during standard management directed at improving intracranial pressure, CPP and PtiO2. Local PtiO2 was continuously measured in uninjured areas and snapshot samples were collected hourly and analyzed in relation to simultaneous CPP. Other variables that influence tissue oxygen availability, mainly arterial oxygen saturation, end tidal carbon dioxide, body temperature and effective hemoglobin, were also monitored to keep them stable in order to avoid non-ischemic hypoxia. RESULTS Our main results indicate that half of PtiO2 samples were at risk of hypoxia (defined by a PtiO2 equal to or less than 15 mmHg) when CPP was below 60 mmHg, and that this percentage decreased to 25% and 10% when CPP was between 60 and 70 mmHg and above 70 mmHg, respectively (p < 0.01). CONCLUSION Our study indicates that the risk of brain tissue hypoxia in severely head injured patients could be really high when CPP is below the normally recommended threshold of 60 mmHg, is still elevated when CPP is slightly over it, but decreases at CPP values above it.