983 resultados para Pre-salt Dolomitization
Resumo:
Laboratory salt decay simulations are a well established method to assess the relative durability of stone. There is still, however, very much scope to implement improved monitoring techniques to investigate the changes experienced by the materials during these experiments. Non-destructive techniques have acquired over recent decades a preferential status for monitoring change samples during salt decay tests, as they allow cumulative tests on each sample. The development of HD laser scanning permits detailed mapping of surface changes and, therefore, constitutes an effective technique to monitor non-destructively surface changes in tested samples as an alternative to other monitoring techniques such as traditional weight loss strategies that do not permit any degree of spatial differentiation that can be related, for example, to underlying stone properties.
Resumo:
In this study thermodynamically stable dispersions of amorphous quinine, a model BCS class 2 therapeutic agent, within an amorphous polymeric platform (HPC), termed a solid-in-solid dispersion, were produced using hot melt extrusion. Characterisation of the pre-extrudates and extrudates was performed using hyper-differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and Raman spectroscopy. Water uptake by the raw materials was determined using dynamic vapour sorption (DVS) analysis. Furthermore, the presence or absence of crystalline drug following storage at 25 °C/60% relative humidity and 40 °C/75% relative humidity in a sealed glass jar, and at 40 °C/75% relative humidity in an open glass jar for 3 months was determined using PXRD. Amorphous quinine was generated in situ during extrusion from both quinine base (5%, 10%, 20% w/w drug loading) and from quinine hydrochloride (5%, 10% w/w drug loading) and remained thermodynamically stable as a solid-in-solid dispersion within the HPC extrudates. When processed with HPC, quinine hydrochloride (20% w/w) was converted to amorphous quinine hydrochloride. Whilst stable for up to 3 months when stored under sealed conditions, this amorphous form was unstable, resulting in recrystallisation of the hydrochloride salt following storage for 1 month at 40 °C/75% relative humidity in an open glass jar. The behaviour of the amorphous quinine hydrochloride (20% w/w) HPC extrudate was related, at least in part, to the lower stability and the hygroscopic properties of this amorphous form.
Resumo:
Perennial rye-grass was subjected to two different14C labelling regimes to enable a partitioning of the carbon sources contributing to rhizosphere carbon-flow. Plant/soil microcosms were designed which enabled rye-grass plants to either receive a single pulse of14C-CO2 or to be pre-labelled using a series of14C-CO2 pulses, allowing the fate of newly photoassimilated carbon and carbon lost by root decomposition to be followed into the soil. For young rye-grass plants grown over a short period, rhizosphere carbon flow was found to be dominated by newly photoassimilated carbon. Evidence for this came from the observed percentage of the total14C budget (i.e. total14C-CO2 fixed by the plants) lost from the root/soil system, which was 30 times greater for the pulse labelled compared to pre-labelled plants. Root decomposition was found to be less at 10°C compared to 20-25°C, though input of14C into the soil was the same at both temperatures. © 1988 Kluwer Academic Publishers.
Resumo:
Objectives: Amorphous drug forms provide a useful method of enhancing the dissolution performance of poorly water-soluble drugs; however, they are inherently unstable. In this article, we have used Flory–Huggins theory to predict drug solubility and miscibility in polymer candidates, and used this information to compare spray drying and melt extrusion as processes to manufacture solid dispersions.
Method: Solid dispersions were characterised using a combination of thermal (thermogravimetric analysis and differential scanning calorimetry) and spectroscopic (Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction methods.
Key Findings: Spray drying permitted generation of amorphous solid dispersions to be produced across a wider drug concentration than melt extrusion. Melt extrusion provided sufficient energy for more intimate mixing to be achieved between drug and polymer, which may improve physical stability. It was also confirmed that stronger drug–polymer interactions might be generated through melt extrusion. Remixing and dissolution of recrystallised felodipine into the polymeric matrices did occur during the modulated differential scanning calorimetry analysis, but the complementary information provided from FTIR confirms that all freshly prepared spray-dried samples were amorphous with the existence of amorphous drug domains within high drug-loaded samples.
Conclusion: Using temperature–composition phase diagrams to probe the relevance of temperature and drug composition in specific polymer candidates facilitates polymer screening for the purpose of formulating solid dispersions.
Resumo:
Staphylococcus epidermidis biofilm formation is responsible for the persistence of orthopedic implant infections. Previous studies have shown that exposure of S. epidermidis biofilms to sub-MICs of antibiotics induced an increased level of biofilm persistence. BODIPY FL-vancomycin (a fluorescent vancomycin conjugate) and confocal microscopy were used to show that the penetration of vancomycin through sub-MIC-vancomycin-treated S. epidermidis biofilms was impeded compared to that of control, untreated biofilms. Further experiments showed an increase in the extracellular DNA (eDNA) concentration in biofilms preexposed to sub-MIC vancomycin, suggesting a potential role for eDNA in the hindrance of vancomycin activity. Exogenously added, S. epidermidis DNA increased the planktonic vancomycin MIC and protected biofilm cells from lethal vancomycin concentrations. Finally, isothermal titration calorimetry (ITC) revealed that the binding constant of DNA and vancomycin was 100-fold higher than the previously reported binding constant of vancomycin and its intended cellular D-Ala-D-Ala peptide target. This study provides an explanation of the eDNA-based mechanism of antibiotic tolerance in sub-MIC-vancomycin-treated S. epidermidis biofilms, which might be an important factor for the persistence of biofilm infections.
Resumo:
The majority of children in our society are loved andcherished. The occasional cases of intentional injury to a childresulting in death or significant harm evoke powerful anduncomfortable feelings (Devaney et al, 2013), and the publicoutcry may result in health and social workers facing criticism.Identifying whether an infant is at risk of abuse is a challengefor practitioners, and can be a source of stress and anxiety(Brandon et al, 2011). Bruising is a strong indicator of childabuse involving intentional injury (Kemp et al, 2014). Theincidence of bruising correlates to developmental stage, withnon-mobile infants least likely to incur bruising. Therefore, itspresence in pre-mobile infants requires immediate assessment.A search of the literature around bruising in pre-mobile infantsrevealed themes of missed opportunities for early intervention,the role of the father in the family and the significance of childdevelopment. Sharing of knowledge and expertise within themultidisciplinary team is key to safeguarding infants.
Resumo:
We describe a pre-processing correlation attack on an FPGA implementation of AES, protected with a random clocking countermeasure that exhibits complex variations in both the location and amplitude of the power consumption patterns of the AES rounds. It is demonstrated that the merged round patterns can be pre-processed to identify and extract the individual round amplitudes, enabling a successful power analysis attack. We show that the requirement of the random clocking countermeasure to provide a varying execution time between processing rounds can be exploited to select a sub-set of data where sufficient current decay has occurred, further improving the attack. In comparison with the countermeasure's estimated security of 3 million traces from an integration attack, we show that through application of our proposed techniques that the countermeasure can now be broken with as few as 13k traces.
Resumo:
UNLABELLED: Salt-inducible kinase 2 (SIK2) is a multifunctional kinase of the AMPK family that plays a role in CREB1-mediated gene transcription and was recently reported to have therapeutic potential in ovarian cancer. The expression of this kinase was investigated in prostate cancer clinical specimens. Interestingly, auto-antibodies against SIK2 were increased in the plasma of patients with aggressive disease. Examination of SIK2 in prostate cancer cells found that it functions both as a positive regulator of cell-cycle progression and a negative regulator of CREB1 activity. Knockdown of SIK2 inhibited cell growth, delayed cell-cycle progression, induced cell death, and enhanced CREB1 activity. Expression of a kinase-dead mutant of SIK2 also inhibited cell growth, induced cell death, and enhanced CREB1 activity. Treatment with a small-molecule SIK2 inhibitor (ARN-3236), currently in preclinical development, also led to enhanced CREB1 activity in a dose- and time-dependent manner. Because CREB1 is a transcription factor and proto-oncogene, it was posited that the effects of SIK2 on cell proliferation and viability might be mediated by changes in gene expression. To test this, gene expression array profiling was performed and while SIK2 knockdown or overexpression of the kinase-dead mutant affected established CREB1 target genes; the overlap with transcripts regulated by forskolin (FSK), the adenylate cyclase/CREB1 pathway activator, was incomplete.
IMPLICATIONS: This study demonstrates that targeting SIK2 genetically or therapeutically will have pleiotropic effects on cell-cycle progression and transcription factor activation, which should be accounted for when characterizing SIK2 inhibitors.
Resumo:
During the past decade, many molecular components of clathrin-mediated endocytosis have been identified and proposed to play various hypothetical roles in the process [Nat. Rev. Neurosci. 1 (2000) 161; Nature 422 (2003) 37]. One limitation to the evaluation of these hypotheses is the efficiency and resolution of immunolocalization protocols currently in use. In order to facilitate the evaluation of these hypotheses and to understand more fully the molecular mechanisms of clathrin-mediated endocytosis, we have developed a protocol allowing enhanced and reliable subcellular immunolocalization of proteins in synaptic endocytic zones in situ. Synapses established by giant reticulospinal axons in lamprey are used as a model system for these experiments. These axons are unbranched and reach up to 80-100 microm in diameter. Synaptic active zones and surrounding endocytic zones are established on the surface of the axonal cylinder. To provide access for antibodies to the sites of synaptic vesicle recycling, axons are lightly fixed and cut along their longitudinal axis. To preserve the ultrastructure of the synaptic endocytic zone, antibodies are applied without the addition of detergents. Opened axons are incubated with primary antibodies, which are detected with secondary antibodies conjugated to gold particles. Specimens are then post-fixed and processed for electron microscopy. This approach allows preservation of the ultrastructure of the endocytic sites during immunolabeling procedures, while simultaneously achieving reliable immunogold detection of proteins on endocytic intermediates. To explore the utility of this approach, we have investigated the localization of a GTPase, dynamin, on clathrin-coated intermediates in the endocytic zone of the lamprey giant synapse. Using the present immunogold protocol, we confirm the presence of dynamin on late stage coated pits [Nature 422 (2003) 37] and also demonstrate that dynamin is recruited to the coat of endocytic intermediates from the very early stages of the clathrin coat formation. Thus, our experiments show that the current pre-embedding immunogold method is a useful experimental tool to study the molecular mechanisms of synaptic vesicle recycling.
Resumo:
Objectives: Approximately 300 people are diagnosed with Head and Neck cancer annually in Northern Ireland. The management may include treatment by surgery or by chemotherapy and radiotherapy,
or a combination of modalities. Patients whose oral cavity, teeth, salivary glands and jaws that
will be affected by treatment, particularly radiotherapy should have a pre-treatment assessment. This should be done as early as possible to maximise the time available for dental management. However, this can be challenging owing to the complexities of cancer diagnosis, treatment planning and multidisciplinary management. At the Belfast Dental Hospital, a number of patients were referred post- radiotherapy with complications after not having received a pre-treatment assessment. The referrals for pre- treatment dental assessment were also late in patients’ multidisciplinary journey, limiting the time period
for dental input. The purpose of this audit was to examine the time period between dental assessment and commencement of radiotherapy and whether this was an adequate time frame for dental management. This audit will also examine the dental diseases present and the treatments required pre-radiotherapy. Methods: Data for this audit was collected over 4 months in 2012
by analysing the dental charts and referrals of new patients who were referred to and attended the dental head and neck oncology clinic. A standardised referral pro-forma was introduced from September 2013 to improve the referral process.
A re-audit was conducted over 4 months in 2014. Data was collected similarly as previous. The time period between dental assessment and commencement of radiotherapy was examined. The presence of dental disease and subsequent treatments required were also noted.
Results: 63 new patients were examined in the dental head and neck oncology clinic over 4 months in 2012. 48 (76.2%) were examined pre-radiotherapy. The average length of time between dental assessment and radiotherapy commencement was 11 days. A new standardised referral pro-forma was introduced in 2013. In the re-audit, 65 new patients were seen over 4 months in 2014.
60 (92.3%) patients were examined pre-radiotherapy. The average length of time between dental assessment and radiotherapy commencement was 18 days.
Conclusion: Given the high prevalence of pre-existing dental disease amongst head and neck cancer patients, prompt dental assessment and treatment is vital. Efforts aimed at improving the care pathway are on-going through the implementation of a mandatory referral pro-forma and a dedicated assessment clinic.