984 resultados para Polyphosphate Accumulating Organisms
Resumo:
A prospective study of fungal and bacterial flora of burn wounds was carried out from February 2004 to February 2005 at the Burns Unit of Hospital Regional da Asa Norte, Brasília, Brazil. During the period of the study, 203 patients were treated at the Burns Unit. Wound swab cultures were assessed at weekly intervals for four weeks. Three hundred and fifty four sampling procedures (surface swabs) were performed from the burn wounds. The study revealed that bacterial colonization reached 86.6% within the first week. Although the gram-negative organisms, as a group, were more predominant, Staphylococcus aureus (28.4%) was the most prevalent organism in the first week. It was however surpassed by Pseudomonas aeruginosa form third week onwards. For S. aureus and P. aeruginosa vancomycin and polymyxin were found to be the most effective drugs. Most of the isolates showed high level resistance to antimicrobial agents. Fungi were found to colonize the burn wound late during the second week postburn, with a peak incidence during the third and fourth weeks. Species identification of fungi revealed that Candida tropicalis was the most predominant, followed by Candida parapsilosis. It is crucial for every burn institution to determine the specific pattern of burn wound microbial colonization, the time-related changes in the dominant flora, and the antimicrobial sensitivity profiles. This would enable early treatment of imminent septic episodes with proper empirical systemic antibiotics, without waiting for culture results, thus improving the overall infection-related morbidity and mortality.
Resumo:
The aim of this study was to evaluate the susceptibility of 35 resistant Pseudomonas aeruginosa clinical isolates to a quaternary ammonium hospital disinfectant. The methodology was the AOAC Use-Dilution Test, with disinfectant at its use-concentration. In addition, the chromosomal DNA profile of the isolates were determined by macro-restriction pulsed field gel electrophoresis (PFGE) method aiming to verify the relatedness among them and the behavior of isolates from the same group regarding the susceptibility to the disinfectant. Seventy one percent of the isolates were multiresistant to antibiotics and 43% showed a reduced susceptibility to the disinfectant. The PFGE methodology detected 18 major clonal groups. We found isolates with reduced susceptibility to the disinfectant and we think that these are worrying data that should be further investigated including different organisms and chemical agents in order to demonstrate that microorganisms can be destroyed by biocide as necessary. We also found strains of the same clonal groups showing different susceptibility to the disinfectant. This is an interesting observation considering that only few works are available about this subject. PFGE profile seems not to be a reliable marker for resistance to disinfectants.
Resumo:
Question: Are maternal effects (i.e. maternal transfer of immune components to their offspring via the placenta or the egg) specifically directed to the offspring on which ectoparasites predictably aggregate? Organisms: The barn owl (Tyto alba) because late-hatched offspring are the main target of the ectoparasitic fly Carnus hemapterus. Hypothesis: Pre-hatching maternal effects enhance parasite resistance of late- compared with early-hatched nestlings. Search method: To disentangle the effect of natal from rearing ranks on parasite intensity, we exchanged hatchlings between nests to allocate early- and late-hatched hatchlings randomly in the within-brood age hierarchy. Result: After controlling for rearing ranks, cross-fostered late-hatched nestlings were less parasitized but lighter than cross-fostered early-hatched nestlings. Conclusion: Pre-hatching maternal effects increase parasite resistance of late-hatched offspring at a growth cost.
Resumo:
Asthma results from allergen-driven intrapulmonary Th2 response, and is characterized by intermittent airway obstruction, airway hyperreactivity (AHR), and airway inflammation. Accumulating evidence indicates that inflammatory diseases of the respiratory tract are commonly associated with elevated production of nitric oxide (NO). It has been shown that exhaled NO may be derived from constitutive NO synthase (NOS) such as endothelial (NOS 3) and neural (NOS 1) in normal airways, while increased levels of NO in asthma appear to be derived from inducible NOS2 expressed in the inflamed airways. Nevertheless, the functional role of NO and NOS isoforms in the regulation of AHR and airway inflammation in human or experimental models of asthma is still highly controversial. In the present commentary we will discuss the role of lipopolysaccharides contamination of allergens as key element in the controversy related to the regulation of NOS2 activity in experimental asthma.
Resumo:
Allergic diseases have been closely related to Th2 immune responses, which are characterized by high levels of interleukin (IL) IL-4, IL-5, IL-9 and IL-13. These cytokines orchestrate the recruitment and activation of different effector cells, such as eosinophils and mast cells. These cells along with Th2 cytokines are key players on the development of chronic allergic inflammatory disorders, usually characterized by airway hyperresponsiveness, reversible airway obstruction, and airway inflammation. Accumulating evidences have shown that altering cytokine-producing profile of Th2 cells by inducing Th1 responses may be protective against Th2-related diseases such as asthma and allergy. Interferon-gamma (IFN-gamma), the principal Th1 effector cytokine, has shown to be crucial for the resolution of allergic-related immunopathologies. In fact, reduced production of this cytokine has been correlated with severe asthma. In this review, we will discuss the role of IFN-gamma during the generation of immune responses and its influence on allergic inflammation models, emphasizing its biologic properties during the different aspects of allergic responses.
Resumo:
Many studies demonstrate that intestinal inflammation is either initiated or exaggerated by a component of the normal microbiota, most likely commensal bacteria or products derived from these organisms. We review the nature of human inflammatory bowel disease, the evidence for the involvement of the normal bacterial flora in these disorders and the relevance of maintaining the integrity of the epithelial barrier. Moreover, we, and others, have shown abnormal mitochondria structure in tissue resections from patients with inflammatory bowel disease and tissues from rodents that demonstrated psychological stress-induced increases in epithelial permeability. Thus, we also consider the possibility that a defect in epithelial mitochondrial function would predispose an individual to respond to their commensal bacteria flora - no longer considering them as a beneficial passive inhabitant, but rather perceiving them as a threatening and pro-inflammatory stimulus. In support of this postulate, we discuss our recent findings from an in vitro model showing that the human colon-derived T84 cell line exposed to the metabolic stressor, dinitrophenol, and the non-pathogenic, non-invasive, Escherichia coli (strain HB101) display a loss of barrier function, increased signal transduction and increased production of the chemokine, interleukin 8.
Resumo:
MOTIVATION: Regulatory gene networks contain generic modules such as feedback loops that are essential for the regulation of many biological functions. The study of the stochastic mechanisms of gene regulation is instrumental for the understanding of how cells maintain their expression at levels commensurate with their biological role, as well as to engineer gene expression switches of appropriate behavior. The lack of precise knowledge on the steady-state distribution of gene expression requires the use of Gillespie algorithms and Monte-Carlo approximations. METHODOLOGY: In this study, we provide new exact formulas and efficient numerical algorithms for computing/modeling the steady-state of a class of self-regulated genes, and we use it to model/compute the stochastic expression of a gene of interest in an engineered network introduced in mammalian cells. The behavior of the genetic network is then analyzed experimentally in living cells. RESULTS: Stochastic models often reveal counter-intuitive experimental behaviors, and we find that this genetic architecture displays a unimodal behavior in mammalian cells, which was unexpected given its known bimodal response in unicellular organisms. We provide a molecular rationale for this behavior, and we implement it in the mathematical picture to explain the experimental results obtained from this network.
Resumo:
A study was carried out to compare the performance of a commercial method (MGIT) and four inexpensive drug susceptibility methods: nitrate reductase assay (NRA), microscopic observation drug susceptibility (MODS) assay, MTT test, and broth microdilution method (BMM). A total of 64 clinical isolates of Mycobacterium tuberculosis were studied. The Lowenstein-Jensen proportion method (PM) was used as gold standard. MGIT, NRA, MODS, and MTT results were available on an average of less than 10 days, whereas BMM results could be reported in about 20 days. Most of the evaluated tests showed excellent performance for isoniazid and rifampicin, with sensitivity and specificity values > 90%. With most of the assays, sensitivity for ethambutol was low (62-87%) whereas for streptomycin, sensitivity values ranged from 84 to 100%; NRA-discrepancies were associated with cultures with a low proportion of EMB-resistant organisms while most discrepancies with quantitative tests (MMT and BMM) were seen with isolates whose minimal inhibitory concentrations fell close the cutoff. MGIT is reliable but still expensive. NRA is the most inexpensive and easiest method to perform without changing the organization of the routine PM laboratory performance. While MODS, MTT, and BMM, have the disadvantage from the point of view of biosafety, they offer the possibility of detecting partial resistant strains. This study shows a very good level of agreement of the four low-cost methods compared to the PM for rapid detection of isoniazid, rifampicin and streptomycin resistance (Kappa values > 0.8); more standardization is needed for ethambutol.
Resumo:
Among all infectious diseases that afflict humans, tuberculosis (TB) remains the deadliest. At present, epidemiologists estimate that one-third of the world population is infected with tubercle bacilli, which is responsible for 8 to 10 million new cases of TB and 3 million deaths annually throughout the world. Approximately 95% of new cases and 98% of deaths occur in developing nations, generally due to the few resources available to ensure proper treatment and where human immunodeficiency virus (HIV) infections are common. In 1882, Dr Robert Koch identified an acid-fast bacterium, Mycobacterium tuberculosis, as the causative agent of TB. Thirty-nine years later, BCG vaccine was introduced for human use, and became the most widely used prophylactic strategy to fight TB in the world. The discovery of the properties of first-line antimycobacterial drugs in the past century yielded effective chemotherapies, which considerably decreased TB mortality rates worldwide. The later introduction of some additional drugs to the arsenal used to treat TB seemed to provide an adequate number of effective antimicrobial agents. The modern, standard short-course therapy for TB recommended by the World Health Organization is based on a four-drug regimen that must be strictly followed to prevent drug resistance acquisition, and relies on direct observation of patient compliance to ensure effective treatment. Mycobacteria show a high degree of intrinsic resistance to most antibiotics and chemotherapeutic agents due to the low permeability of its cell wall. Nevertheless, the cell wall barrier alone cannot produce significant levels of drug resistance. M. tuberculosis mutants resistant to any single drug are naturally present in any large bacterial population, irrespective of exposure to drugs. The frequency of mutants resistant to rifampicin and isoniazid, the two principal antimycobacterial drugs currently in use, is relatively high and, therefore, the large extra-cellular population of actively metabolizing and rapidly growing tubercle bacilli in cavitary lesions will contain organisms which are resistant to a single drug. Consequently, monotherapy or improperly administered two-drug therapies will select for drug-resistant mutants that may lead to drug resistance in the entire bacterial population. Thereby, despite the availability of effective chemotherapy and the moderately protective vaccine, new anti-TB agents are urgently needed to decrease the global incidence of TB. The resumption of TB, mainly caused by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains and HIV epidemics, led to an increased need to understand the molecular mechanisms of drug action and drug resistance, which should provide significant insight into the development of newer compounds. The latter should be effective to combat both drug-susceptible and MDR/XDR-TB.
Resumo:
Abstract Life history traits encompass all the decisions concerning fitness an individual is faced with during his life. The study of these traits is crucial to understand the factors shaping the biology of living organisms. Up until now, most of the information on the evolution of life history traits comes from laboratory studies. While these studies are interesting to test the effect of specific parameters, their conclusions are difficult to extrapolate to natural populations. Investigating the evolution of life history traits in natural populations is of great interest. This may be tricky because it requires information on reproduction, survival and morphology of individuals. Mark-recapture methods allow most of this information to be obtained. However, when direct observations of a species are not possible due to its ecology, indirect methods must be used to infer lifetime reproductive success. In this case, molecular markers are particularly helpful in assessing the genetic relationships between individuals and allow the construction of a pedigree. This thesis focuses on a natural population of a small insectivorous mammal, the greater white-toothed shrew, Crocidura russula. Because of its hidden lifestyle, the two complementary techniques mentioned above were combined to gather information on this population. The data were used to explore diverse aspects of evolutionary biology. We demonstrated that the high genetic variance displayed by the species was not maintained by its mating system because this shrew was less monogamous than previously thought. The large genetic diversity was most likely promoted by gene flow from the neighborhood. Dispersal was thus a central topic in this thesis. We showed that dispersal was not driven by inbreeding avoidance. In addition, we did not find any inbreeding depression in the population. Dispersal was promoted by a high number of vacant territories in the population for both sexes, meaning that territory acquisition played an important role in driving dispersal. Moreover, dispersal propensity was shown to have a genetic basis and, once achieved, to have no effect on individual fitness. Body mass was found to be a life history trait strongly influenced by sexual and viability selection in both sexes. Larger individuals had higher access to reproduction through territory acquisition and defense than lighter ones. By contrast, intermediate size individuals were favored by viability selection presumably because of ecological constraints and metabolic costs. Finally, we demonstrated that the majority of the life history traits in our shrew population has the potential to evolve because they maintained substantial amounts of additive genetic variance. Nonetheless, life history traits had no significant heritability due to their high level of nonadditive or environmental variance. Résumé Les traits d'histoire de vie comprennent toutes les décisions auxquelles un individu est confronté au cours de sa vie et qui concernent sa valeur adaptative. L'étude de ces traits est cruciale pour comprendre les facteurs qui façonnent la biologie des êtres vivants. Jusqu'à ce jour, la majorité des informations sur l'évolution des traits d'histoire de vie provient d'études réalisées en laboratoire. Alors que ces études sont intéressantes pour tester l'effet de paramètres spécifiques, leurs conclusions sont difficilement extrapolables aux populations naturelles. Il est particulièrement intéressant d'étudier l'évolution des traits d'histoire de vie dans des populations naturelles. Toutefois, ces études peuvent se révéler difficiles parce qu'elles requièrent des informations sur la reproduction, la survie et la morphologie des individus. Des méthodes de marquage-recapture permettent d'obtenir ces informations. Cependant, lorsque l'écologie de l'espèce rend les obervations directes impossibles, des méthodes indirectes doivent être utilisées pour obtenir le succès reproducteur des individus. Dans ce cas, les marqueurs moléculaires sont particulièrement utiles pour évaluer les relations génétiques entre individus et permettre la construction d'un pedigree. Cette thèse porte sur une population naturelle d'un petit mammifère insectivore, la musaraigne musette, Crocidura russula. Parce que cette espèce présente un mode de vie souterrain, les deux techniques complémentaires mentionnées ci-dessus ont été combinées pour acquérir les informations nécessaires. Les données ont été utilisées pour explorer divers aspects de biologie evolutive. Nous avons montré que la grande quantité de variance génétique trouvée chez cette espèce n'est pas maintenue par son système d'appariement. Celle-ci s'est en effet avérée être moins monogame que ce qui était admis jusqu'ici. Sa grande diversité génétique est plutôt entretenue par le flux de gènes provenant du voisinage. La dispersion a donc été un sujet phare dans cette thèse. Nous avons montré qu'elle n'est pas provoquée par un évitement de la consanguinité et nous n'avons pas trouvé de dépression de consanguité dans notre population. L'acquisition d'un territoire joue par contre un rôle important dans la dispersion. En outre, la dispersion possède une base génétique chez cette espèce. De plus, une fois qu'ils ont dispersé, les individus n'ont pas une valeur adaptative differente d'individus philopatriques. Le poids s'est avéré être un trait d'histoire de vie fortement influencé par la sélection sexuelle et de viabilité chez les deux sexes. Les gros individus ont accès à la reproduction parce qu'ils acquièrent et défendent un territoire plus facilement que les plus légers. Au contraire, les individus de taille intermédiaire sont favorisés par la sélection de viabilité, certainement à cause de contraintes écologiques et de coûts métaboliques. Finalement, nous avons montré que la majorité des traits d'histoire de vie dans notre population a le potentiel d'évoluer parce qu'elle maintient des quantités considérables de variance génétique additive. Néanmoins, l'héritabilité de ces traits d'histoire de vie n'est pas significative à cause de la grande quantité de variance non-additive ou environmentale associée à ces traits.
Resumo:
Anterior spinal infection (prevertebral abscess and/or discitis) after posterior instrumentation for vertebral fractures is a challenging complication, since a new implant may become necessary anteriorly, in a septic environment. Generally accepted management guidelines are yet to be established. The authors present a case of posterior instrumentation for fractures of T12 and L1, complicated after 9 months with an anterior infection (prevertebral abscess and discitis) with extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (E. coli). This case is unique in that the multi-resistant organism was isolated only after the second stage of infection treatment, which consisted of anterior débridement and anterior implantation of titanium cages and rods. In this particular case, infection was controlled despite implantation of multiple cages, screws and rods, and fusion was achieved, by means of intravenous antibiotic treatment for 12 months. At the latest follow-up, 24 months post surgery, there was no evidence of infection. This problem case may be helpful for surgeons confronted with spinal deformities secondary to infections with multi-resistant organisms.
Resumo:
Bio-nano interactions can be defined as the study of interactions between nanoscale entities and biological systems such as, but not limited to, peptides, proteins, lipids, DNA and other biomolecules, cells and cellular receptors and organisms including humans. Studying bio-nano interactions is particularly useful for understanding engineered materials that have at least one dimension in the nanoscale. Such materials may consist of discrete particles or nanostructured surfaces. Much of biology functions at the nanoscale; therefore, our ability to manipulate materials such that they are taken up at the nanoscale, and engage biological machinery in a designed and purposeful manner, opens new vistas for more efficient diagnostics, therapeutics (treatments) and tissue regeneration, so-called nanomedicine. Additionally, this ability of nanomaterials to interact with and be taken up by cells allows nanomaterials to be used as probes and tools to advance our understanding of cellular functioning. Yet, as a new technology, assessment of the safety of nanomaterials, and the applicability of existing regulatory frameworks for nanomaterials must be investigated in parallel with development of novel applications. The Royal Society meeting 'Bio-nano interactions: new tools, insights and impacts' provided an important platform for open dialogue on the current state of knowledge on these issues, bringing together scientists, industry, regulatory and legal experts to concretize existing discourse in science law and policy. This paper summarizes these discussions and the insights that emerged.
Resumo:
BACKGROUND: Despite the continuous production of genome sequence for a number of organisms, reliable, comprehensive, and cost effective gene prediction remains problematic. This is particularly true for genomes for which there is not a large collection of known gene sequences, such as the recently published chicken genome. We used the chicken sequence to test comparative and homology-based gene-finding methods followed by experimental validation as an effective genome annotation method. RESULTS: We performed experimental evaluation by RT-PCR of three different computational gene finders, Ensembl, SGP2 and TWINSCAN, applied to the chicken genome. A Venn diagram was computed and each component of it was evaluated. The results showed that de novo comparative methods can identify up to about 700 chicken genes with no previous evidence of expression, and can correctly extend about 40% of homology-based predictions at the 5' end. CONCLUSIONS: De novo comparative gene prediction followed by experimental verification is effective at enhancing the annotation of the newly sequenced genomes provided by standard homology-based methods.
Resumo:
Peptides with broad-spectrum antimicrobial activity, known as antimicrobial peptides, have been isolated from distinct organisms. This paper describes the in vitro evaluation of the cytotoxicity and antiviral activity of nine peptides with different structures and origins against herpes simplex virus type 1, human adenovirus respiratory strain, and rotavirus SA11. Most of the evaluated peptides presented antiviral activity but they were only active near cytotoxic concentrations. Nevertheless, these results seem promising, and further modifications on the peptide's structures may improve their selectivity and reduce their cytotoxicity.
Resumo:
Mycobacterium was verified in animals from a Brazilian dairy herd, a total of 42 samples from 30 cows were submitted to culture and the isolated strains were analyzed by two polymerase chain reaction (PCR), the first specific for species belonging to the Mycobacterium complex (MTBC) and the other for differentiating M. tuberculosis from M. bovis. Twenty seven samples (64.3%) from 18 animals (60%) were positive for mycobacteria by culture, including samples from 15 retrofaryngeal lymphnodes (55.5%), 9 prescapular lymphnodes (33.3%), 2 lungs (7.4%), and 1 liver (3.7%). All isolated colonies were confirmed by PCR to contain MTBC organisms, and were identified as M. bovis by the same methodology.