984 resultados para Polinomio de Jones
Resumo:
Bassenthwaite (Lake) is one of the larger Cumbrian lakes, certainly one of the most distinctive, and of considerable conservation and amenity value. Although its shores lack sizeable settlements, its main inflow receives sewage effluent from a major tourist centre (Keswick) and is subject to episodic floods. These influences, the growing development of leisure activities at the lake (e.g. sailing, time-share units), and recent road-construction, have led to past appraisals of ecological impacts and lake management. The lake has not been the subject of intense and long-term ecological study, but much scattered information exists that is relevant to future management decisions. In the present Report, commissioned by North West Water, such information - published and unpublished - is surveyed. Especial attention is given to evidence bearing on susceptibility to change, affecting the lake environment and its biota or species of conservation interest. Extensive use has been made of the results of a recent (1986-7) seasonal survey by the FBA.
Resumo:
提出了一种基于基频分量消光的波片快轴标定方法,并利用琼斯矩阵对其标定原理进行了分析。激光器、起偏器、相位调制器、待标定1/4波片、检偏器和光电探测器构成标定光路,起偏器、检偏器的透光轴与相位调制器的振动轴分别成+45°和0°夹角。准直激光束依次经过起偏器、相位调制器、待标定1/4波片和检偏器,由光电探测器接收。理论分析表明该标定方法标定精度主要取决于检偏器的定位误差。实验验证了该标定方法的有效性,1/4波片快轴标定结果的最大偏差为0.043°,标准差为0.012°,标定精度为0.05°。
Resumo:
A literature survey was carried out into the effects of petroleum hydrocarbons in freshwater, from the toxicity, biodegradability and concentration aspects. It was supplemented by a selective search on hydrocarbons in the marine environment for comparison. The aim was to determine the major inputs of these hydrocarbons, their accumulation, effects and fate in freshwaters. The search was confined to the period 1965-1978. The bibliography contains 390 references, divided by subject.
Resumo:
The ”Vollenweider model” is a sophisticated mathematical statement about the long-range behaviour of (mainly temperate) lakes and their ability to support phytoplankton chlorophyll. Misapplication of the model, against which Vollenweider himself warned, has led to many misconceptions about the dynamics of plankton in lakes and reservoirs and about how best to manage systems subject to eutrophication. This contribution intends to frame the most important issues in context of the phosphorus- loading and phosphorus-limitation concepts. Emphasis is placed on the need to distinguish rate-limitation from capacity-limitation, to understand which is more manageable and why, to discern the mechanisms of internal recycling and their importance, and to appreciate the respective roles of physical and biotic components in local control of algal dynamics. Some general approaches to the management of water quality in lakes and reservoirs to eutrophication are outlined.
Resumo:
Mixing and transport processes in surface waters strongly influence the structure of aquatic ecosystems. The impact of mixing on algal growth is species-dependent, affecting the competition among species and acting as a selective factor for the composition of the biocoenose. Were it not for the ever-changing ”aquatic weather”, the composition of pelagic ecosystems would be relatively simple. Probably just a few optimally adapted algal species would survive in a given water-body. In contrast to terrestrial ecosystems, in which the spatial heterogeneity is primarily responsible for the abundance of niches, in aquatic systems (especially in the pelagic zone) the niches are provided by the temporal structure of physical processes. The latter are discussed in terms of the relative sizes of physical versus biological time-scales. The relevant time-scales of mixing and transport cover the range between seconds and years. Correspondingly, their influence on growth of algae is based on different mechanisms: rapid changes are relevant for the fast biological processes such as nutrient uptake and photosynthesis, and the slower changes are relevant for the less dynamic processes such as growth, respiration, mineralization, and settling of algal cells. Mixing time-scales are combined with a dynamic model of photosynthesis to demonstrate their influence on algal growth.
Resumo:
Restoration of water-bodies from eutrophication has proved to be extremely difficult. Mathematical models have been used extensively to provide guidance for management decisions. The aim of this paper is to elucidate important problems of using models for predicting environmental changes. First, the necessity for a proper uncertainty assessment of the model, upon calibration, has not been widely recognized. Predictions must not be a single time trajectory; they should be a band, expressing system uncertainty and natural variability. Availability of this information may alter the decision to be taken. Second, even with well-calibrated models, there is no guarantee they will give correct projections in situations where the model is used to predict the effects of measures designed to bring the system into an entirely different ”operating point”, as is typically the case in eutrophication abatement. The concept of educated speculation is introduced to partially overcome this difficulty. Lake Veluwe is used as a case to illustrate the point. Third, as questions become more detailed, such as ”what about expected algal composition”, there is a greater probability of running into fundamental problems that are associated with predicting the behaviour of complex non-linear systems. Some of these systems show extreme initial condition sensitivity and even, perhaps, chaotic behaviour, and are therefore fundamentally unpredictable.
Resumo:
Biomanipulation is a form of biological engineering in which organisms are selectively removed or encouraged to alleviate the symptoms of eutrophication. Most examples involve fish and grazer zooplankton though mussels have also been used. The technique involves continuous management in many deeper lakes and is not a substitute for nutrient control. In some lakes, alterations to the lake environment have given longer-term positive effects. And in some shallow lakes, biomanipulation may be essential, alongside nutrient control, in re- establishing former aquatic-plant-dominated ecosystems which have been lost through severe eutrophication. The emergence of biomanipulation techniques emphasises that lake systems are not simply chemical reactors which respond simply to engineered chemical changes, but very complex and still very imperfectly understood ecosystems which require a yet profounder understanding before they can be restored with certainty.
Resumo:
Results from long-term investigations on biomanipulation show that indirect effects are at least as important as direct effects are for the stability of biomanipulation. Three types of indirect effects can be distinguished: (1) a change in quantity or quality of the resource base, (2) behavioural change of the prey, and (3) development of anti-predator traits. Although indirect effects of type (2), (e.g. a change in the pattern of vertical migration of zooplankton), and type (3), (e.g. development of helmets and neck teeth in Daphnia), are important mechanisms, the most essential indirect effects regarding biomanipulation belong to type (1). An example of the latter will be demonstrated: the complex of indirect effects of enhanced grazing by large herbivores on the phosphorus metabolism of the lake. It is concluded that control of the indirect effects is absolutely necessary to stabilize biomanipulation measures, but this is much more difficult than the control of direct effects and needs deeper insights into the structuring mechanisms of food webs. Proper management of fish stocks, in combination with the control of phosphorus load and/or the physical conditions, seems to be the most promising way of controlling the indirect effects of biomanipulation.
The significance of sedimentation and sediments to phytoplankton growth in drinking-water reservoirs
Resumo:
In the mesotrophic-eutrophic Saidenbach Reservoir in Saxony, the nanoplankton and cyanobacteria have increased at the expense of diatom dominance, due to a doubling of the external phosphorus load in the last 15 years. However, the phosphorus sedimentation flux is still very high (up to 80% of the input), corresponding to more than 2 g m2 d-1 in terms of dry weight. There is a strong correlation between the abundance of diatoms in the euphotic zone and their sedimentation flux (with a delay of about 2 weeks). Only about 25% of the deposited material could be clearly attributed to plankton biomass; the remainder resulted from flocculation and precipitation processes or directly from the inflow of clay minerals. The ash content of the deposited material was high (73%). Thus the sedimentation flux can be considered to operate as an internal water-treatment/oligotrophication process within the lake. The neighbouring Neunzehnhain Reservoir still has a very clear water with a transparency up to 18 m depth. Though the sediment was not much lower than Saidenbach sediment in total phosphorus and total numbers of bacteria, sulphide was always absent and the ratio of Fe 2+ to Fe 3+ was very low in the upper (0- 5 cm) layer. Thus the external and internal phosphorus loads do not attain the critical level necessary to induce a ”phosphorus - phytoplankton” feedback loop.
Resumo:
Natural calcite precipitation in lakes is a well-known control mechanism of eutrophication. In hard-water lakes, calcite deposits on the flat bottoms of shallow lakes and near the shores of deeper lakes resulted from biogenic decalcification during the millenia after the last glacial period. The objective of a new restoration technology is to intensify the natural process of precipitation by utilizing the different qualities of calcareous mud layers. In a pilot experiment in Lake Rudower See, East Germany, phosphorus-poor deeper layers of the sediments were flushed out and spread over the phosphorus-rich uppermost sediments, to promote the co- precipitation of calcite with phosphorus from the water-column.
Resumo:
Since 1989, intensive studies have been made on a relatively new (1983-84) oligotrophic reservoir and its pre-reservoir in the Black Forest. This paper briefly reports on the hydrochemistry, especially annual variations in phosphorus loadings, and the seasonal development of phytoplankton in 1989 and 1990.
Resumo:
Esthwaite Water is the most productive or eutrophic lake in the English Lake District. Since 1945 its water quality has been determined from weekly or biweekly measurements of temperature, oxygen, plant nutrients and phytoplankton abundance. The lake receives phosphorus from its largely lowland-pasture catchment, sewage effluent from the villages of Hawkshead and Near Sawrey, and from a cage-culture fish farm. From 1986 phosphorus has been removed from the sewage effluent of Hawkshead which was considered to contribute between 47% and 67% of the total phosphorus loading to the lake. At the commencement of phosphorus removal regular measurements of phosphorus in the superficial 0-4 cm layer of lake sediment were made from cores collected at random sites. Since 1986 the mean annual concentration of alkali-extractable sediment phosphorus has decreased by 23%. This change is not significant at the 5% level but nearly so. There has been no marked change in water quality over this period. Summer dominance of blue-green algae which arose in the early 1980s after decline of the previous summer forms, Ceratium spp., has been maintained. Improvement in water quality is unlikely to be achieved at the present phosphorus loading.
Resumo:
The severe problems caused by large phytoplankton populations in the River Meuse date back to the beginning of the 1980s. However, no clear relationship can be established between an increase of algal growth and dissolved nutrient concentrations, at least in the Belgian part of the river. Most probably, plankton algae start developing in France, utilizing large inputs of phosphorus from some of the tributaries: this point will be investigated further, as well as the effect of a reduction in the releases of phosphorus. A mathematical model helps to understand the main factors which control algal growth: underwater light, temperature, discharge and grazing by zooplankton. The last is a major loss process in summer and, as shown by recent observations, may trigger a seasonal succession leading to dominance by large phytoplankton taxa. With regard to water quality, eutrophication is a major problem in drinking-water treatment (filter clogging, etc.) and large numbers of decomposing algae may adversely affect the oxygen budget of the river. On the other hand, algal photosynthesis is the most important oxygen source at periods of low discharge, and reduced algal production may result in dramatic oxygen decreases in heavily polluted stretches of the river.
Resumo:
In a small lake, intermittent destratification was installed after several other physico-chemical and physical in-lake therapy measures (phosphorus immobilization, permanent destratification) had been tested without great success. If an aerobic sediment-water interface can be maintained, intermittent destratification removes cyanobacteria and prevents optimal development of other members of the photoautotrophic plankton. During growing seasons, increasing abundances of small-bodied herbivores (Bosmina) and Daphnia may have accounted for relatively low phytoplankton biomass as well. Intermittent destratification is a very fast-working in-lake measure and seems to be applicable even in relatively shallow lakes (< 15 m), in which permanent destratification seems to be risky.